Last active
August 29, 2015 14:08
-
-
Save myuon/f60f9634742a9c8c83a9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| module Codensity where | |
| open import Level | |
| open import Function | |
| open import Category.Functor | |
| open import Category.Monad | |
| open import Relation.Binary.PropositionalEquality | |
| record Functor {a b} (F : Set a → Set b) : Set (suc (a ⊔ b)) where | |
| field | |
| fmap : ∀{A B} → (A → B) → F A → F B | |
| infixl 4 _<$>_ _<$_ | |
| _<$>_ : ∀{A B} → (A → B) → F A → F B | |
| _<$>_ = fmap | |
| _<$_ : ∀ {A B} → A → F B → F A | |
| _<$_ x y = const x <$> y | |
| field | |
| preserve-id : ∀{A} (Fa : F A) → fmap id Fa ≡ id Fa | |
| covariant : ∀{A B C} (f : A → B) → (g : B → C) → (Fa : F A) | |
| → fmap (g ∘ f) Fa ≡ fmap g (fmap f Fa) | |
| open Functor public | |
| record Monad {a b} (M : Set a → Set b) : Set (suc (a ⊔ b)) where | |
| infixl 1 _>>=_ | |
| field | |
| return : ∀ {A} → A → M A | |
| _>>=_ : ∀ {A B} → M A → (A → M B) → M B | |
| field | |
| return-apply : ∀{A B} → (a : A) → (k : A → M B) → (return a >>= k) ≡ k a | |
| return-id-right : ∀{A} → (m : M A) → (m >>= return) ≡ m | |
| bind-assoc : ∀{A B C} → (m : M A) → (k : A → M B) → (h : B → M C) → | |
| (m >>= (λ x → k x >>= h)) ≡ ((m >>= k) >>= h) | |
| data Ran {ℓ} (g h : Set ℓ → Set ℓ) (a : Set ℓ) : Set (suc ℓ) where | |
| kan : (∀{b : Set ℓ} → (a → g b) → h b) → Ran g h a | |
| runRan : ∀ {ℓ g h a} → Ran {ℓ} g h a → ∀ {b} → (a -> g b) -> h b | |
| runRan (kan f) = f | |
| data Codensity {ℓ} (m : Set ℓ → Set ℓ) (a : Set ℓ) : Set (suc ℓ) where | |
| codensity : (∀{b : Set ℓ} → (a → m b) → m b) → Codensity m a | |
| runCodensity : ∀ {ℓ m a} → Codensity {ℓ} m a → ∀ {b} → (a -> m b) -> m b | |
| runCodensity (codensity f) = f | |
| Codensity-Monad : ∀ {ℓ m} → Monad (Codensity {ℓ} m) | |
| Codensity-Monad {ℓ} {m} = record | |
| { return = return' | |
| ; _>>=_ = _>>='_ | |
| ; return-apply = \a k → | |
| begin | |
| return' a >>=' k ≡⟨ refl ⟩ | |
| (codensity $ \k → k a) >>=' k ≡⟨ refl ⟩ | |
| codensity (\c → (\k → k a) $ \a → runCodensity (k a) c) ≡⟨ refl ⟩ | |
| codensity (\c → runCodensity (k a) c) ≡⟨ refl ⟩ | |
| codensity (runCodensity (k a)) ≡⟨ codensity-runCodensity-id (k a) ⟩ | |
| k a ∎ | |
| ; return-id-right = \ma → | |
| begin | |
| ma >>=' return' ≡⟨ refl ⟩ | |
| codensity (\c → runCodensity ma $ \a → runCodensity (return' a) c) ≡⟨ refl ⟩ | |
| codensity (\c → runCodensity ma $ \a → (\k → k a) c) ≡⟨ refl ⟩ | |
| codensity (\c → runCodensity ma $ \a → c a) ≡⟨ refl ⟩ | |
| codensity (runCodensity ma) ≡⟨ codensity-runCodensity-id ma ⟩ | |
| ma ∎ | |
| ; bind-assoc = \ma k h → | |
| begin | |
| (ma >>=' (\x → k x >>=' h)) | |
| ≡⟨ refl ⟩ | |
| (codensity $ \c → runCodensity ma $ \a → runCodensity (k a >>=' h) c) | |
| ≡⟨ refl ⟩ | |
| (codensity $ \c → runCodensity ma $ \a → (\d → runCodensity (k a) $ \b → runCodensity (h b) d) c) | |
| ≡⟨ refl ⟩ | |
| (codensity $ \c → (\d → runCodensity ma $ \a → runCodensity (k a) d) $ \a → runCodensity (h a) c) | |
| ≡⟨ refl ⟩ | |
| (codensity $ \c → runCodensity (ma >>=' k) $ \a → runCodensity (h a) c) | |
| ≡⟨ refl ⟩ | |
| (ma >>=' k) >>=' h ∎ | |
| } | |
| where | |
| open ≡-Reasoning | |
| return' : ∀ {A} (a : A) → Codensity m A | |
| return' a = codensity $ \k → k a | |
| _>>='_ : ∀ {A B} → (Codensity m A) → (A → Codensity m B) → Codensity m B | |
| ma >>=' k = codensity $ \c → runCodensity ma $ \a → runCodensity (k a) c | |
| codensity-runCodensity-id : ∀{A} → (ma : Codensity {ℓ} m A) → | |
| codensity (runCodensity ma) ≡ ma | |
| codensity-runCodensity-id (codensity _) = refl | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment