Created
December 22, 2023 11:42
-
-
Save mzdravkov/b3e390c35e16a91fc1aa206f5ccdbec7 to your computer and use it in GitHub Desktop.
build_sequences_no_interpolation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def build_sequences(time_series, valid_periods, categories, train_size, test_size): | |
""" | |
Creates all possible test sequences with size <test_size> which have | |
a training sequence of <train_size> in front. | |
""" | |
X = [] | |
y = [] | |
final_categories = [] | |
for ts, range, category in zip(time_series, valid_periods, categories): | |
valid_ts = cut_valid(ts, range) | |
# valid_ts = (valid_ts - np.mean(valid_ts)) / (np.max(valid_ts) - np.min(valid_ts)) | |
size = len(valid_ts) | |
splits = (size - train_size) // test_size | |
if splits < 2: | |
if size < train_size + test_size: | |
# train_ts = valid_ts[0:-test_size] | |
# train_ts = interpolate_to_size(train_ts, train_size) | |
# X.append(train_ts) | |
padding_len = train_size + test_size - size | |
padding = np.zeros(padding_len, dtype='float32') | |
valid_ts = np.concatenate((padding, valid_ts)) | |
start = 0 | |
X.append(valid_ts[0:-test_size]) | |
else: | |
start = size - train_size - test_size | |
X.append(valid_ts[start:-test_size]) | |
y.append(valid_ts[-test_size:]) | |
final_categories.append(category) | |
else: | |
# whole interpolated sequence | |
# X.append(interpolate_to_size(valid_ts[0:-test_size], train_size)) | |
# y.append(valid_ts[-test_size:]) | |
# final_categories.append(category) | |
# whole interpolated sequence flipped vertically | |
flipped = (-1*valid_ts) + np.max(valid_ts) | |
# X.append(interpolate_to_size(flipped[0:-test_size], train_size)) | |
# y.append(flipped[-test_size:]) | |
# final_categories.append(category) | |
# whole original sequence reversed horizontally | |
reverse = valid_ts[::-1] | |
# X.append(interpolate_to_size(reverse[0:-test_size], train_size)) | |
# y.append(reverse[-test_size:]) | |
# final_categories.append(category) | |
# whole original sequence reversed horizontally and flipped vertically | |
reverse_flipped = (-1*reverse) + np.max(reverse) | |
# X.append(interpolate_to_size(reverse_flipped[0:-test_size], train_size)) | |
# y.append(reverse_flipped[-test_size:]) | |
# final_categories.append(category) | |
for shift in [0, 6, 12]: | |
shifted_splits = (size - train_size - shift) // test_size | |
if shifted_splits < 2: | |
continue | |
ts_splitter = TimeSeriesSplit(n_splits=shifted_splits, max_train_size=train_size, test_size=test_size) | |
for train_seq_ix, test_seq_ix in ts_splitter.split(valid_ts[:-shift or None]): | |
X.append(valid_ts[train_seq_ix[0]:train_seq_ix[-1]+1]) | |
y.append(valid_ts[test_seq_ix[0]:test_seq_ix[-1]+1]) | |
final_categories.append(category) | |
for train_seq_ix, test_seq_ix in ts_splitter.split(reverse[:-shift or None]): | |
X.append(valid_ts[train_seq_ix[0]:train_seq_ix[-1]+1]) | |
y.append(valid_ts[test_seq_ix[0]:test_seq_ix[-1]+1]) | |
final_categories.append(category) | |
for train_seq_ix, test_seq_ix in ts_splitter.split(flipped[:-shift or None]): | |
X.append(valid_ts[train_seq_ix[0]:train_seq_ix[-1]+1]) | |
y.append(valid_ts[test_seq_ix[0]:test_seq_ix[-1]+1]) | |
final_categories.append(category) | |
for train_seq_ix, test_seq_ix in ts_splitter.split(reverse_flipped[:-shift or None]): | |
X.append(valid_ts[train_seq_ix[0]:train_seq_ix[-1]+1]) | |
y.append(valid_ts[test_seq_ix[0]:test_seq_ix[-1]+1]) | |
final_categories.append(category) | |
# X.append(valid_ts[::-1][train_seq_ix[0]:train_seq_ix[-1]+1]) | |
# y.append(valid_ts[::-1][test_seq_ix[0]:test_seq_ix[-1]+1]) | |
# final_categories.append(category) | |
return np.array(X), np.array(y), np.array(final_categories) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment