Created
December 8, 2018 15:51
-
-
Save n-yoda/4e86c43531121232dfddfd70b5e56a25 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import argparse | |
import tensorflow as tf | |
class UVPQ: | |
def __init__(self, w, h, p, q): | |
indices_x = tf.range(w, dtype=tf.int32) | |
indices_y = tf.range(h, dtype=tf.int32) | |
x, y = tf.meshgrid(indices_x, indices_y) | |
c0_5 = tf.constant(0.5, tf.float32) | |
w_f = tf.cast(w, tf.float32) | |
h_f = tf.cast(h, tf.float32) | |
u = (tf.cast(x, tf.float32) + c0_5) / w_f | |
v = (tf.cast(y, tf.float32) + c0_5) / h_f | |
u_2d = tf.reshape(u, [-1, 1]) | |
v_2d = tf.reshape(v, [-1, 1]) | |
uv = tf.concat([u_2d, v_2d], axis=1) | |
uvp = tf.pad(uv, [[0, 0], [0, 1]], constant_values=p) | |
self.uvpq = tf.pad(uvp, [[0, 0], [0, 1]], constant_values=q) | |
class Train: | |
def __init__(self, path, p, q): | |
file = tf.read_file(path) | |
raw = tf.image.decode_image(file, 4) | |
self.image = tf.cast(raw, tf.float32) / 255.0 | |
self.linear = tf.reshape(self.image, [-1, 4]) | |
self.h = tf.shape(raw)[0] | |
self.w = tf.shape(raw)[1] | |
self._uvpq = UVPQ(self.w, self.h, p, q) | |
self.uvpq = self._uvpq.uvpq | |
parser = argparse.ArgumentParser(description='NN texture') | |
parser.add_argument('--render', default=False, action='store_true') | |
parser.add_argument('-p', type=float, default=0.0) | |
parser.add_argument('-q', type=float, default=0.0) | |
parser.add_argument('-W', type=int, default=64) | |
parser.add_argument('-H', type=int, default=64) | |
args = parser.parse_args() | |
# For rendering | |
p = tf.placeholder_with_default( | |
tf.constant(args.p, tf.float32), []) | |
q = tf.placeholder_with_default( | |
tf.constant(args.q, tf.float32), []) | |
uvpq = UVPQ(args.W, args.H, p, q) | |
# For learning | |
train0 = Train('blue.png', 1.0, 1.0) | |
train1 = Train('higan.png', 1.0, -1.0) | |
train2 = Train('rose.png', -1.0, -1.0) | |
train3 = Train('hasu.png', -1.0, 1.0) | |
trains = [train0, train1, train2, train3] | |
trains_uvpq = tf.concat([t.uvpq for t in trains], axis=0) | |
trains_linear = tf.concat([t.linear for t in trains], axis=0) | |
# Model | |
input = uvpq.uvpq if args.render else trains_uvpq | |
w0 = tf.Variable(tf.random_normal([4,4])) | |
b0 = tf.Variable (tf.random_normal([4])) | |
out0 = tf.tanh(tf.matmul(input, w0) + b0) | |
w1 = tf.Variable(tf.random_normal([4,4])) | |
b1 = tf.Variable (tf.random_normal([4])) | |
out1 = tf.tanh(tf.matmul(input, w1) + b1) | |
w2 = tf.Variable(tf.random_normal([4,4])) | |
b2 = tf.Variable (tf.random_normal([4])) | |
out2 = tf.matmul(out0, w2) + b2 | |
w3 = tf.Variable(tf.random_normal([4,4])) | |
b3 = tf.Variable (tf.random_normal([4])) | |
out3 = tf.matmul(out1, w3) + b3 | |
out_linear = tf.tanh(out2 + out3) * 0.5 + 0.5 | |
out_linear8 = tf.cast(out_linear * 255, tf.uint8) | |
if not args.render: | |
trainable = [tf.reshape(x, [-1]) for x in tf.trainable_variables()] | |
norm = tf.norm(tf.concat(trainable, axis=0)) | |
error = tf.losses.mean_squared_error(trains_linear, out_linear) | |
optimizer = tf.train.AdamOptimizer() | |
minimize = optimizer.minimize(error + norm * 0.001) | |
saver = tf.train.Saver(tf.global_variables()) | |
sess = tf.Session() | |
try: | |
saver.restore(sess, './ckpt/test') | |
print('restored') | |
except: | |
sess.run(tf.global_variables_initializer()) | |
saver.save(sess, './ckpt/test') | |
print('created') | |
if args.render: | |
out_image = tf.reshape(out_linear, [args.H, args.W, -1]) | |
else: | |
for i in range(10000): | |
_, e, n = sess.run([minimize, error, norm]) | |
if i % 100 == 0: | |
print('error:', e, 'norm:', n) | |
saver.save(sess, './ckpt/test') | |
print('saved') | |
start = 0 | |
for i in range(len(trains)): | |
train = trains[i] | |
w, h = sess.run([train.w, train.h]) | |
out_slice = tf.slice(out_linear8, [start, 0], [w * h, -1]) | |
out_slice_reshaped = tf.reshape(out_slice, [h, w, -1]) | |
start += w * h | |
sess.run( | |
tf.write_file( | |
'predict' + str(i) + '.png', | |
tf.image.encode_png(out_slice_reshaped))) | |
def print_mat(tensor, name): | |
result = 'half4x4 ' + name + ' = half4x4(' | |
val = sess.run(tensor) | |
for i in range(4): | |
for j in range(4): | |
if i != 0 or j != 0: | |
result += ', ' | |
result += str(val[i, j]) | |
result += ');' | |
print(result) | |
return result | |
def print_vec(tensor, name): | |
result = 'half4 ' + name + ' = half4(' | |
val = sess.run(tensor) | |
for i in range(4): | |
if i != 0: | |
result += ', ' | |
result += str(val[i]) | |
result += ');' | |
print(result) | |
return result | |
print_mat(w0, 'w0') | |
print_vec(b0, 'b0') | |
print_mat(w1, 'w1') | |
print_vec(b1, 'b1') | |
print_mat(w2, 'w2') | |
print_vec(b2, 'b2') | |
print_mat(w3, 'w3') | |
print_vec(b3, 'b3') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment