Created
June 20, 2019 20:06
-
-
Save n0obcoder/e774ee019cab978a23d46ac198dcd39e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
results_dir= 'results' | |
if not os.path.exists(results_dir): | |
os.mkdir(results_dir) | |
x_data = np.array((),dtype=np.int32) | |
y_data = np.array((),dtype=np.int32) | |
#................................... | |
x, y = gen_data(100,[5,5]) # generating 100 data points around the center [5,5] | |
plt.scatter(x, y) | |
x_data = np.hstack((x_data, x)) | |
y_data = np.hstack((y_data, y)) | |
#................................... | |
x, y = gen_data(50,[-2,4]) # generating 50 data points around the center [-2,4] | |
plt.scatter(x, y) | |
x_data = np.hstack((x_data, x)) | |
y_data = np.hstack((y_data, y)) | |
#................................... | |
x, y = gen_data(300,[2,3]) # generating 300 data points around the center [2,3] | |
plt.scatter(x, y) | |
x_data = np.hstack((x_data, x)) | |
y_data = np.hstack((y_data, y)) | |
#................................... | |
#plt.scatter(x_data,y_data) | |
plt.title('k-Means Clustering') | |
plt.xlabel('Some Feature x') | |
plt.ylabel('Some Feature y') | |
plt.grid() | |
plt.savefig(results_dir + '/generated_data.jpg') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment