Created
June 6, 2020 06:19
-
-
Save n2cholas/654850d6345242c4406e0bef23e3d060 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import time | |
import torch | |
from torch import nn | |
import torchvision | |
from torchvision import transforms | |
from ignite.metrics import Accuracy | |
acc_type = sys.argv[1] # custom or ignite | |
acc_device = 'cpu' if acc_type == 'ignite' else sys.argv[2] | |
# Set up Classes ============================================================= | |
class MyAccuracy(Accuracy): | |
def reset(self) -> None: | |
self._num_correct = torch.tensor(0., device=acc_device) | |
self._num_examples = 0 | |
super().reset() | |
def update(self, output): | |
y_pred, y = output | |
self._check_shape((y_pred, y)) | |
self._check_type((y_pred, y)) | |
if self._type == "binary": | |
correct = torch.eq(y_pred.view(-1).to(y), y.view(-1)) | |
elif self._type == "multiclass": | |
indices = torch.argmax(y_pred, dim=1) | |
correct = torch.eq(indices, y).view(-1) | |
elif self._type == "multilabel": | |
# if y, y_pred shape is (N, C, ...) -> (N x ..., C) | |
num_classes = y_pred.size(1) | |
last_dim = y_pred.ndimension() | |
y_pred = torch.transpose(y_pred, 1, last_dim - 1).reshape(-1, num_classes) | |
y = torch.transpose(y, 1, last_dim - 1).reshape(-1, num_classes) | |
correct = torch.all(y == y_pred.type_as(y), dim=-1) | |
self._num_correct += torch.sum(correct).to(acc_device) | |
self._num_examples += correct.shape[0] | |
def Net(): | |
return nn.Sequential( | |
nn.Conv2d(3, 128, 5, padding=2), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(128, 256, 3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(256, 512, 3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(512, 1024, 3, padding=1), | |
nn.ReLU(inplace=True), | |
nn.AdaptiveMaxPool2d((1,1)), | |
nn.Flatten(), | |
nn.Linear(1024, 512), | |
nn.ReLU(inplace=True), | |
nn.Linear(512, 256), | |
nn.ReLU(inplace=True), | |
nn.Linear(256, 10) | |
) | |
# Set up Data, Network, etc ================================================== | |
transform = torchvision.transforms.Compose( | |
[transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
dataset = torchvision.datasets.CIFAR10( | |
root='./data', train=True, download=True, transform=transform) | |
dataloader = torch.utils.data.DataLoader( | |
dataset, batch_size=16, shuffle=True, num_workers=8, pin_memory=True) | |
net = Net().cuda() | |
criterion = nn.CrossEntropyLoss() | |
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9) | |
acc_metric = Accuracy() if acc_type == 'ignite' else MyAccuracy() | |
# Run Profiler =============================================================== | |
loader_iter = iter(dataloader) | |
time.sleep(15.) # preload some batches so the trace is more condensed | |
with torch.autograd.profiler.profile(enabled=True, use_cuda=True) as p: | |
for i in range(4): | |
data = next(loader_iter) | |
inputs, labels = (data[0].cuda(non_blocking=True), | |
data[1].cuda(non_blocking=True)) | |
optimizer.zero_grad() | |
outputs = net(inputs) | |
loss = criterion(outputs, labels) | |
loss.backward() | |
optimizer.step() | |
acc_metric.update((outputs, labels)) | |
trace_file = f'{acc_type}_{acc_device}_trace' | |
p.export_chrome_trace(trace_file) | |
print(f'Done trace: {trace_file}') | |
# Time Train Loop ============================================================ | |
start = torch.cuda.Event(enable_timing=True) | |
end = torch.cuda.Event(enable_timing=True) | |
times = [] | |
for i in range(20): | |
start.record() | |
for i, data in enumerate(dataloader): | |
inputs, labels = (data[0].cuda(non_blocking=True), | |
data[1].cuda(non_blocking=True)) | |
optimizer.zero_grad() | |
outputs = net(inputs) | |
loss = criterion(outputs, labels) | |
loss.backward() | |
optimizer.step() | |
acc_metric.update((outputs, labels)) | |
if i > 500: break | |
end.record() | |
torch.cuda.synchronize() | |
times.append(start.elapsed_time(end)*0.001) | |
std, mean = torch.std_mean(torch.tensor(times)) | |
print(f'Mean Time: {mean.item()}s Std Time: {std.item()}s All Times: {times}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment