Created
September 15, 2018 10:02
-
-
Save nacnudus/77c1e0660176f6822bfe20c8b5313de8 to your computer and use it in GitHub Desktop.
Tidy a spreadsheet of the Luxembourg Time Use Survey with unpivotr
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Inspired by http://www.brodrigues.co/blog/2018-09-11-human_to_machine/ | |
# https://twitter.com/brodriguesco/status/1039604517287931904 | |
# "You can find the data I will use here. Click on the “Time use” folder and you can download the workbook." | |
# http://statistiques.public.lu/stat/ReportFolders/ReportFolder.aspx?IF_Language=eng&MainTheme=3&FldrName=1&RFPath=14306 | |
library(tidyverse) | |
library(tidyxl) | |
library(unpivotr) | |
library(lubridate) | |
path <- "./download.xlsx" | |
formats <- xlsx_formats(path) | |
cells <- | |
path %>% | |
xlsx_cells() %>% | |
# Drop French and Index sheets | |
dplyr::filter(str_detect(sheet, "day$")) %>% | |
# Clean character values | |
mutate(character = str_trim(character)) %>% | |
# Drop empty cells | |
dplyr::filter(data_type != "blank", | |
!(data_type == "character" && character == "")) %>% | |
# Drop total rows | |
dplyr::filter(row <= 58L) %>% | |
# Separate out the bold categories in the first two columns by budging them to | |
# the left, then budging everything to the right so that all column numbers | |
# are positive. | |
mutate(col = if_else(col %in% 1:2 & formats$local$font$bold[local_format_id], | |
col - 2L, | |
col), | |
col = col + 2L) %>% | |
# Fix time values expressed as dates rather than character | |
mutate(character = if_else(data_type == "date", "00:00", character), | |
data_type = if_else(data_type == "date", "character", data_type)) | |
# Tidy every sheet | |
tidy_sheet <- function(cells) { | |
series <- dplyr::filter(cells, row == 1L, col == 1L)$character | |
cells %>% | |
dplyr::filter(row >= 2L) %>% | |
behead("WNW", "activity_category_id") %>% | |
behead("WNW", "activity_category") %>% | |
behead("W", "activity_subcategory_id") %>% | |
behead("W", "activity_subcategory") %>% | |
behead("NNW", "grouping") %>% | |
behead("NNW", "group") %>% | |
behead("NNW", "metric") %>% | |
behead("N", "unit") %>% | |
select(-row, -col) %>% | |
spatter(unit) %>% # like tidyr::spread() by handles mixed data types | |
mutate(Time = as.integer(as.duration(lubridate::hm(Time)))) | |
} | |
tidy_data <- | |
cells %>% | |
select(sheet, row, col, data_type, character, numeric) %>% | |
nest(-sheet) %>% | |
mutate(data = map(data, tidy_sheet)) %>% | |
unnest() | |
tidy_data |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment