Skip to content

Instantly share code, notes, and snippets.

@nad2000
Last active November 2, 2018 20:07
Show Gist options
  • Save nad2000/6310c1f0cd196f707480 to your computer and use it in GitHub Desktop.
Save nad2000/6310c1f0cd196f707480 to your computer and use it in GitHub Desktop.
Compute softmax values for each sets of scores in x. #ml, #deep_learning
"""Softmax."""
scores = [3.0, 1.0, 0.2]
import numpy as np
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
E = np.exp(x)
return E / E.sum(axis=0)
print(softmax(scores))
# Plot softmax curves
import matplotlib.pyplot as plt
x = np.arange(-2.0, 6.0, 0.1)
scores = np.vstack([x, np.ones_like(x), 0.2 * np.ones_like(x)])
plt.plot(x, softmax(scores).T, linewidth=2)
plt.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment