Created
August 20, 2020 03:51
-
-
Save nahidalam/26c51fad94f38000a4ab15a3615823a7 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Decoder(tf.keras.Model): | |
def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz): | |
super(Decoder, self).__init__() | |
self.batch_sz = batch_sz | |
self.dec_units = dec_units | |
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) | |
self.gru = tf.keras.layers.GRU(self.dec_units, | |
return_sequences=True, | |
return_state=True, | |
recurrent_initializer='glorot_uniform') | |
self.fc = tf.keras.layers.Dense(vocab_size) | |
def call(self, x, hidden, enc_output): | |
# as we have specified return_sequences=True in encoder gru | |
# enc_output shape == (batch_size, max_length, hidden_size) | |
# x shape after passing through embedding == (batch_size, 1, embedding_dim) | |
x = self.embedding(x) | |
output, state = self.gru(x, initial_state = hidden) | |
# output shape == (batch_size * 1, hidden_size) | |
output = tf.reshape(output, (-1, output.shape[2])) | |
# output shape == (batch_size, vocab) | |
x = self.fc(output) | |
return x, state |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment