Last active
August 29, 2015 14:02
-
-
Save naiquevin/9ee5386b9eda60b2dc0e to your computer and use it in GitHub Desktop.
Hands on R session from Machine learning workshop
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
### Hands on R session by Harshad Saykhedkar from today's Machine | |
### learning workshop (Fifth elephant Mumbai run-up event) | |
--- | |
R version 3.1.0 (2014-04-10) -- "Spring Dance" | |
Copyright (C) 2014 The R Foundation for Statistical Computing | |
Platform: i686-pc-linux-gnu (32-bit) | |
R is free software and comes with ABSOLUTELY NO WARRANTY. | |
You are welcome to redistribute it under certain conditions. | |
Type 'license()' or 'licence()' for distribution details. | |
Natural language support but running in an English locale | |
R is a collaborative project with many contributors. | |
Type 'contributors()' for more information and | |
'citation()' on how to cite R or R packages in publications. | |
Type 'demo()' for some demos, 'help()' for on-line help, or | |
'help.start()' for an HTML browser interface to help. | |
Type 'q()' to quit R. | |
> options(STERM='iESS', str.dendrogram.last="'", editor='emacsclient', show.error.locations=TRUE) | |
> require('tm') | |
Loading required package: tm | |
> typeof(1) | |
[1] "double" | |
> typeof("c") | |
[1] "character" | |
> typeof("car") | |
[1] "character" | |
> typeof(TRUE) | |
[1] "logical" | |
> typeof(FALSE) | |
[1] "logical" | |
> as.factor(c("a", "b")) | |
[1] a b | |
Levels: a b | |
> c("a", "b") | |
[1] "a" "b" | |
> typeof(c("a", "b")) | |
[1] "character" | |
> is.vector(c("a", "b")) | |
[1] TRUE | |
> class(c("a", "b")) | |
[1] "character" | |
> | |
> list(c("a", "b"), 1) | |
[[1]] | |
[1] "a" "b" | |
[[2]] | |
[1] 1 | |
> library(datasets) | |
> library(help = "datasets") | |
Information on package ‘datasets’ | |
Description: | |
Package: datasets | |
Version: 3.1.0 | |
Priority: base | |
Title: The R Datasets Package | |
Author: R Core Team and contributors worldwide | |
Maintainer: R Core Team <[email protected]> | |
Description: Base R datasets | |
License: Part of R 3.1.0 | |
Built: R 3.1.0; ; 2014-04-10 20:21:40 UTC; unix | |
Index: | |
AirPassengers Monthly Airline Passenger Numbers 1949-1960 | |
BJsales Sales Data with Leading Indicator | |
BOD Biochemical Oxygen Demand | |
CO2 Carbon Dioxide Uptake in Grass Plants | |
ChickWeight Weight versus age of chicks on different diets | |
DNase Elisa assay of DNase | |
EuStockMarkets Daily Closing Prices of Major European Stock | |
Indices, 1991-1998 | |
Formaldehyde Determination of Formaldehyde | |
HairEyeColor Hair and Eye Color of Statistics Students | |
Harman23.cor Harman Example 2.3 | |
Harman74.cor Harman Example 7.4 | |
Indometh Pharmacokinetics of Indomethacin | |
InsectSprays Effectiveness of Insect Sprays | |
JohnsonJohnson Quarterly Earnings per Johnson & Johnson Share | |
LakeHuron Level of Lake Huron 1875-1972 | |
LifeCycleSavings Intercountry Life-Cycle Savings Data | |
Loblolly Growth of Loblolly pine trees | |
Nile Flow of the River Nile | |
Orange Growth of Orange Trees | |
OrchardSprays Potency of Orchard Sprays | |
PlantGrowth Results from an Experiment on Plant Growth | |
Puromycin Reaction Velocity of an Enzymatic Reaction | |
Theoph Pharmacokinetics of Theophylline | |
Titanic Survival of passengers on the Titanic | |
ToothGrowth The Effect of Vitamin C on Tooth Growth in | |
Guinea Pigs | |
UCBAdmissions Student Admissions at UC Berkeley | |
UKDriverDeaths Road Casualties in Great Britain 1969-84 | |
UKLungDeaths Monthly Deaths from Lung Diseases in the UK | |
UKgas UK Quarterly Gas Consumption | |
USAccDeaths Accidental Deaths in the US 1973-1978 | |
USArrests Violent Crime Rates by US State | |
USJudgeRatings Lawyers' Ratings of State Judges in the US | |
Superior Court | |
USPersonalExpenditure Personal Expenditure Data | |
VADeaths Death Rates in Virginia (1940) | |
WWWusage Internet Usage per Minute | |
WorldPhones The World's Telephones | |
ability.cov Ability and Intelligence Tests | |
airmiles Passenger Miles on Commercial US Airlines, | |
1937-1960 | |
airquality New York Air Quality Measurements | |
anscombe Anscombe's Quartet of 'Identical' Simple Linear | |
Regressions | |
attenu The Joyner-Boore Attenuation Data | |
attitude The Chatterjee-Price Attitude Data | |
austres Quarterly Time Series of the Number of | |
Australian Residents | |
beavers Body Temperature Series of Two Beavers | |
cars Speed and Stopping Distances of Cars | |
chickwts Chicken Weights by Feed Type | |
co2 Mauna Loa Atmospheric CO2 Concentration | |
crimtab Student's 3000 Criminals Data | |
datasets-package The R Datasets Package | |
discoveries Yearly Numbers of Important Discoveries | |
esoph Smoking, Alcohol and (O)esophageal Cancer | |
euro Conversion Rates of Euro Currencies | |
eurodist Distances Between European Cities | |
faithful Old Faithful Geyser Data | |
freeny Freeny's Revenue Data | |
infert Infertility after Spontaneous and Induced | |
Abortion | |
iris Edgar Anderson's Iris Data | |
islands Areas of the World's Major Landmasses | |
lh Luteinizing Hormone in Blood Samples | |
longley Longley's Economic Regression Data | |
lynx Annual Canadian Lynx trappings 1821-1934 | |
morley Michelson Speed of Light Data | |
mtcars Motor Trend Car Road Tests | |
nhtemp Average Yearly Temperatures in New Haven | |
nottem Average Monthly Temperatures at Nottingham, | |
1920-1939 | |
npk Classical N, P, K Factorial Experiment | |
occupationalStatus Occupational Status of Fathers and their Sons | |
precip Annual Precipitation in US Cities | |
presidents Quarterly Approval Ratings of US Presidents | |
pressure Vapor Pressure of Mercury as a Function of | |
Temperature | |
quakes Locations of Earthquakes off Fiji | |
randu Random Numbers from Congruential Generator | |
RANDU | |
rivers Lengths of Major North American Rivers | |
rock Measurements on Petroleum Rock Samples | |
sleep Student's Sleep Data | |
stackloss Brownlee's Stack Loss Plant Data | |
state US State Facts and Figures | |
sunspot.month Monthly Sunspot Data, from 1749 to "Present" | |
sunspot.year Yearly Sunspot Data, 1700-1988 | |
sunspots Monthly Sunspot Numbers, 1749-1983 | |
swiss Swiss Fertility and Socioeconomic Indicators | |
(1888) Data | |
treering Yearly Treering Data, -6000-1979 | |
trees Girth, Height and Volume for Black Cherry Trees | |
uspop Populations Recorded by the US Census | |
volcano Topographic Information on Auckland's Maunga | |
Whau Volcano | |
warpbreaks The Number of Breaks in Yarn during Weaving | |
women Average Heights and Weights for American Women | |
> ?cars | |
> head(cars) | |
speed dist | |
1 4 2 | |
2 4 10 | |
3 7 4 | |
4 7 22 | |
5 8 16 | |
6 9 10 | |
> print(cars) | |
speed dist | |
1 4 2 | |
2 4 10 | |
3 7 4 | |
4 7 22 | |
5 8 16 | |
6 9 10 | |
7 10 18 | |
8 10 26 | |
9 10 34 | |
10 11 17 | |
11 11 28 | |
12 12 14 | |
13 12 20 | |
14 12 24 | |
15 12 28 | |
16 13 26 | |
17 13 34 | |
18 13 34 | |
19 13 46 | |
20 14 26 | |
21 14 36 | |
22 14 60 | |
23 14 80 | |
24 15 20 | |
25 15 26 | |
26 15 54 | |
27 16 32 | |
28 16 40 | |
29 17 32 | |
30 17 40 | |
31 17 50 | |
32 18 42 | |
33 18 56 | |
34 18 76 | |
35 18 84 | |
36 19 36 | |
37 19 46 | |
38 19 68 | |
39 20 32 | |
40 20 48 | |
41 20 52 | |
42 20 56 | |
43 20 64 | |
44 22 66 | |
45 23 54 | |
46 24 70 | |
47 24 92 | |
48 24 93 | |
49 24 120 | |
50 25 85 | |
> head(cars) | |
speed dist | |
1 4 2 | |
2 4 10 | |
3 7 4 | |
4 7 22 | |
5 8 16 | |
6 9 10 | |
> cars[1, ] | |
speed dist | |
1 4 2 | |
> seq(1, 10) | |
[1] 1 2 3 4 5 6 7 8 9 10 | |
> cars[seq(1, 10), ] | |
speed dist | |
1 4 2 | |
2 4 10 | |
3 7 4 | |
4 7 22 | |
5 8 16 | |
6 9 10 | |
7 10 18 | |
8 10 26 | |
9 10 34 | |
10 11 17 | |
> names(cars) | |
[1] "speed" "dist" | |
> cars$speed | |
[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 | |
[26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25 | |
> cars$dist | |
[1] 2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 26 34 34 46 | |
[20] 26 36 60 80 20 26 54 32 40 32 40 50 42 56 76 84 36 46 68 | |
[39] 32 48 52 56 64 66 54 70 92 93 120 85 | |
> cars[["speed"]] | |
[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 | |
[26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25 | |
> typeof(cars$dist) | |
[1] "double" | |
> head(mtcars) | |
mpg cyl disp hp drat wt qsec vs am gear carb | |
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 | |
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 | |
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 | |
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 | |
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 | |
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 | |
> mtcars[, c("mpg", "cyl", "wt")] | |
mpg cyl wt | |
Mazda RX4 21.0 6 2.620 | |
Mazda RX4 Wag 21.0 6 2.875 | |
Datsun 710 22.8 4 2.320 | |
Hornet 4 Drive 21.4 6 3.215 | |
Hornet Sportabout 18.7 8 3.440 | |
Valiant 18.1 6 3.460 | |
Duster 360 14.3 8 3.570 | |
Merc 240D 24.4 4 3.190 | |
Merc 230 22.8 4 3.150 | |
Merc 280 19.2 6 3.440 | |
Merc 280C 17.8 6 3.440 | |
Merc 450SE 16.4 8 4.070 | |
Merc 450SL 17.3 8 3.730 | |
Merc 450SLC 15.2 8 3.780 | |
Cadillac Fleetwood 10.4 8 5.250 | |
Lincoln Continental 10.4 8 5.424 | |
Chrysler Imperial 14.7 8 5.345 | |
Fiat 128 32.4 4 2.200 | |
Honda Civic 30.4 4 1.615 | |
Toyota Corolla 33.9 4 1.835 | |
Toyota Corona 21.5 4 2.465 | |
Dodge Challenger 15.5 8 3.520 | |
AMC Javelin 15.2 8 3.435 | |
Camaro Z28 13.3 8 3.840 | |
Pontiac Firebird 19.2 8 3.845 | |
Fiat X1-9 27.3 4 1.935 | |
Porsche 914-2 26.0 4 2.140 | |
Lotus Europa 30.4 4 1.513 | |
Ford Pantera L 15.8 8 3.170 | |
Ferrari Dino 19.7 6 2.770 | |
Maserati Bora 15.0 8 3.570 | |
Volvo 142E 21.4 4 2.780 | |
> mtcars[1:5, c("mpg", "cyl", "wt")] | |
mpg cyl wt | |
Mazda RX4 21.0 6 2.620 | |
Mazda RX4 Wag 21.0 6 2.875 | |
Datsun 710 22.8 4 2.320 | |
Hornet 4 Drive 21.4 6 3.215 | |
Hornet Sportabout 18.7 8 3.440 | |
> mtcars[1:5, c(1, 2, 3)] | |
mpg cyl disp | |
Mazda RX4 21.0 6 160 | |
Mazda RX4 Wag 21.0 6 160 | |
Datsun 710 22.8 4 108 | |
Hornet 4 Drive 21.4 6 258 | |
Hornet Sportabout 18.7 8 360 | |
> mtcars[1:5, -c(1, 2)] | |
disp hp drat wt qsec vs am gear carb | |
Mazda RX4 160 110 3.90 2.620 16.46 0 1 4 4 | |
Mazda RX4 Wag 160 110 3.90 2.875 17.02 0 1 4 4 | |
Datsun 710 108 93 3.85 2.320 18.61 1 1 4 1 | |
Hornet 4 Drive 258 110 3.08 3.215 19.44 1 0 3 1 | |
Hornet Sportabout 360 175 3.15 3.440 17.02 0 0 3 2 | |
> dim(mtcars) | |
[1] 32 11 | |
> rownames(mtcars) | |
[1] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" | |
[4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant" | |
[7] "Duster 360" "Merc 240D" "Merc 230" | |
[10] "Merc 280" "Merc 280C" "Merc 450SE" | |
[13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood" | |
[16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128" | |
[19] "Honda Civic" "Toyota Corolla" "Toyota Corona" | |
[22] "Dodge Challenger" "AMC Javelin" "Camaro Z28" | |
[25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2" | |
[28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino" | |
[31] "Maserati Bora" "Volvo 142E" | |
> names(mtcars) | |
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" | |
[11] "carb" | |
> plot(mtcars$disp) | |
> plot(mtcars$cyl, mtcars$mpg) | |
> ?pairs | |
> pairs(cyl ~ mpg + hp, data=mtcars) | |
> mtcars$mpg | |
[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4 | |
[16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7 | |
[31] 15.0 21.4 | |
> mtcars$mpg > 10 | |
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE | |
[16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE | |
[31] TRUE TRUE | |
> mtcars[mtcars$mpg > 10] | |
Error in `[.data.frame`(mtcars, mtcars$mpg > 10) : | |
undefined columns selected | |
> mtcars$mpg > 20 | |
[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE | |
[13] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE | |
[25] FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE | |
> mtcars[mtcars$mpg > 20,] | |
mpg cyl disp hp drat wt qsec vs am gear carb | |
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 | |
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 | |
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 | |
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 | |
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 | |
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 | |
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 | |
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 | |
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 | |
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 | |
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 | |
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 | |
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 | |
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 | |
> sqrt(mtcars$mpg) | |
[1] 4.582576 4.582576 4.774935 4.626013 4.324350 4.254409 3.781534 4.939636 | |
[9] 4.774935 4.381780 4.219005 4.049691 4.159327 3.898718 3.224903 3.224903 | |
[17] 3.834058 5.692100 5.513620 5.822371 4.636809 3.937004 3.898718 3.646917 | |
[25] 4.381780 5.224940 5.099020 5.513620 3.974921 4.438468 3.872983 4.626013 | |
> mtcars[sqrt(mtcars$mpg) < 5,] | |
mpg cyl disp hp drat wt qsec vs am gear carb | |
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 | |
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 | |
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 | |
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 | |
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 | |
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 | |
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 | |
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 | |
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 | |
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 | |
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 | |
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 | |
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 | |
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 | |
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 | |
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 | |
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 | |
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 | |
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 | |
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 | |
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 | |
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 | |
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 | |
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 | |
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 | |
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 | |
> mtcars$newvar <- sqrt(mtcars$mpg) | |
> head(mtcars) | |
mpg cyl disp hp drat wt qsec vs am gear carb newvar | |
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 4.582576 | |
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 4.582576 | |
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 4.774935 | |
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 4.626013 | |
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 4.324350 | |
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 4.254409 | |
> mean(mtcars$mpg) | |
[1] 20.09062 | |
> summary(mtcars$mpg) | |
Min. 1st Qu. Median Mean 3rd Qu. Max. | |
10.40 15.42 19.20 20.09 22.80 33.90 | |
> quantile(mtcars$mpg, seq(0, 1, 0.1)) | |
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% | |
10.40 14.34 15.20 15.98 17.92 19.20 21.00 21.47 24.08 30.09 33.90 | |
> sapply(mtcars, summary) | |
mpg cyl disp hp drat wt qsec vs am gear carb | |
Min. 10.40 4.000 71.1 52.0 2.760 1.513 14.50 0.0000 0.0000 3.000 1.000 | |
1st Qu. 15.42 4.000 120.8 96.5 3.080 2.581 16.89 0.0000 0.0000 3.000 2.000 | |
Median 19.20 6.000 196.3 123.0 3.695 3.325 17.71 0.0000 0.0000 4.000 2.000 | |
Mean 20.09 6.188 230.7 146.7 3.597 3.217 17.85 0.4375 0.4062 3.688 2.812 | |
3rd Qu. 22.80 8.000 326.0 180.0 3.920 3.610 18.90 1.0000 1.0000 4.000 4.000 | |
Max. 33.90 8.000 472.0 335.0 4.930 5.424 22.90 1.0000 1.0000 5.000 8.000 | |
newvar | |
Min. 3.225 | |
1st Qu. 3.927 | |
Median 4.382 | |
Mean 4.435 | |
3rd Qu. 4.775 | |
Max. 5.822 | |
> hist(mtcars$mpg) | |
> density(mtcars$mpg) | |
Call: | |
density.default(x = mtcars$mpg) | |
Data: mtcars$mpg (32 obs.); Bandwidth 'bw' = 2.477 | |
x y | |
Min. : 2.97 Min. :6.481e-05 | |
1st Qu.:12.56 1st Qu.:5.461e-03 | |
Median :22.15 Median :1.926e-02 | |
Mean :22.15 Mean :2.604e-02 | |
3rd Qu.:31.74 3rd Qu.:4.530e-02 | |
Max. :41.33 Max. :6.795e-02 | |
> plot(density(mtcars$mpg)) | |
> quantile(mtcars, seq(0.9, 1, 0.005)) | |
Error in `[.data.frame`(x, order(x, na.last = na.last, decreasing = decreasing)) : | |
undefined columns selected | |
> quantile(mtcars$mpg, seq(0.9, 1, 0.005)) | |
90% 90.5% 91% 91.5% 92% 92.5% 93% 93.5% 94% 94.5% | |
30.0900 30.4000 30.4000 30.4000 30.4000 30.4000 30.4000 30.4000 30.6800 30.9900 | |
95% 95.5% 96% 96.5% 97% 97.5% 98% 98.5% 99% 99.5% | |
31.3000 31.6100 31.9200 32.2300 32.5050 32.7375 32.9700 33.2025 33.4350 33.6675 | |
100% | |
33.9000 | |
> ?cars | |
> linregres <- lm(dist ~ speed, data = cars) | |
> linregres | |
Call: | |
lm(formula = dist ~ speed, data = cars) | |
Coefficients: | |
(Intercept) speed | |
-17.579 3.932 | |
> | |
[1] "linrre" | |
> summary(linregres) | |
Call: | |
lm(formula = dist ~ speed, data = cars) | |
Residuals: | |
Min 1Q Median 3Q Max | |
-29.069 -9.525 -2.272 9.215 43.201 | |
Coefficients: | |
Estimate Std. Error t value Pr(>|t|) | |
(Intercept) -17.5791 6.7584 -2.601 0.0123 * | |
speed 3.9324 0.4155 9.464 1.49e-12 *** | |
--- | |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
Residual standard error: 15.38 on 48 degrees of freedom | |
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438 | |
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12 | |
> linregres <- lm(dist ~ 0 + speed, data = cars) | |
> summary(linregres) | |
Call: | |
lm(formula = dist ~ 0 + speed, data = cars) | |
Residuals: | |
Min 1Q Median 3Q Max | |
-26.183 -12.637 -5.455 4.590 50.181 | |
Coefficients: | |
Estimate Std. Error t value Pr(>|t|) | |
speed 2.9091 0.1414 20.58 <2e-16 *** | |
--- | |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
Residual standard error: 16.26 on 49 degrees of freedom | |
Multiple R-squared: 0.8963, Adjusted R-squared: 0.8942 | |
F-statistic: 423.5 on 1 and 49 DF, p-value: < 2.2e-16 | |
> plot(linregres) | |
Hit <Return> to see next plot: | |
Error in plot.new() : attempt to plot on null device | |
> plot(linregres) | |
Hit <Return> to see next plot: | |
Hit <Return> to see next plot: | |
Hit <Return> to see next plot: | |
Hit <Return> to see next plot: | |
> predict(linregres) | |
1 2 3 4 5 6 7 8 | |
11.63653 11.63653 20.36393 20.36393 23.27306 26.18219 29.09132 29.09132 | |
9 10 11 12 13 14 15 16 | |
29.09132 32.00045 32.00045 34.90959 34.90959 34.90959 34.90959 37.81872 | |
17 18 19 20 21 22 23 24 | |
37.81872 37.81872 37.81872 40.72785 40.72785 40.72785 40.72785 43.63698 | |
25 26 27 28 29 30 31 32 | |
43.63698 43.63698 46.54611 46.54611 49.45525 49.45525 49.45525 52.36438 | |
33 34 35 36 37 38 39 40 | |
52.36438 52.36438 52.36438 55.27351 55.27351 55.27351 58.18264 58.18264 | |
41 42 43 44 45 46 47 48 | |
58.18264 58.18264 58.18264 64.00091 66.91004 69.81917 69.81917 69.81917 | |
49 50 | |
69.81917 72.72830 | |
> predict(linregres, data.frame(speed = c(0,3))) | |
1 2 | |
0.000000 8.727396 | |
> ?eurodist | |
> # hierarchical clustering | |
> temp <- as.matrix(eurodist) | |
> rownames(temp) | |
[1] "Athens" "Barcelona" "Brussels" "Calais" | |
[5] "Cherbourg" "Cologne" "Copenhagen" "Geneva" | |
[9] "Gibraltar" "Hamburg" "Hook of Holland" "Lisbon" | |
[13] "Lyons" "Madrid" "Marseilles" "Milan" | |
[17] "Munich" "Paris" "Rome" "Stockholm" | |
[21] "Vienna" | |
> dim(temp) | |
[1] 21 21 | |
> head(temp) | |
Athens Barcelona Brussels Calais Cherbourg Cologne Copenhagen Geneva | |
Athens 0 3313 2963 3175 3339 2762 3276 2610 | |
Barcelona 3313 0 1318 1326 1294 1498 2218 803 | |
Brussels 2963 1318 0 204 583 206 966 677 | |
Calais 3175 1326 204 0 460 409 1136 747 | |
Cherbourg 3339 1294 583 460 0 785 1545 853 | |
Cologne 2762 1498 206 409 785 0 760 1662 | |
Gibraltar Hamburg Hook of Holland Lisbon Lyons Madrid Marseilles | |
Athens 4485 2977 3030 4532 2753 3949 2865 | |
Barcelona 1172 2018 1490 1305 645 636 521 | |
Brussels 2256 597 172 2084 690 1558 1011 | |
Calais 2224 714 330 2052 739 1550 1059 | |
Cherbourg 2047 1115 731 1827 789 1347 1101 | |
Cologne 2436 460 269 2290 714 1764 1035 | |
Milan Munich Paris Rome Stockholm Vienna | |
Athens 2282 2179 3000 817 3927 1991 | |
Barcelona 1014 1365 1033 1460 2868 1802 | |
Brussels 925 747 285 1511 1616 1175 | |
Calais 1077 977 280 1662 1786 1381 | |
Cherbourg 1209 1160 340 1794 2196 1588 | |
Cologne 911 583 465 1497 1403 937 | |
> ?hclust | |
> hclustres <- hclust(eurodist) | |
> plot(hclustres) | |
> head(cars) | |
speed dist | |
1 4 2 | |
2 4 10 | |
3 7 4 | |
4 7 22 | |
5 8 16 | |
6 9 10 | |
> |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment