Last active
January 7, 2020 06:40
-
-
Save nalingarg2/eb852f77193325202fa4 to your computer and use it in GitHub Desktop.
kafka with Spark Streaming
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
# Hadoop:: KafkaSpark | |
# Recipe:: Kafka and Spark | |
# | |
# Copyright (C) 2015 Cloudwick labs | |
# Contact :: [email protected] | |
# All rights reserved - Do Not Redistribute | |
# | |
#One machine is required as below mentioned steps are for POC purpose only. | |
#install scala | |
wget http://downloads.typesafe.com/scala/2.11.6/scala-2.11.6.tgz | |
tar xvf scala-2.11.6.tgz | |
sudo mv scala-2.11.6 /usr/lib | |
sudo ln -s /usr/lib/scala-2.11.6 /usr/lib/scala | |
export PATH=$PATH:/usr/lib/scala/bin (could add to /etc/profile.d/) | |
scala -version | |
#java installation | |
wget --no-check-certificate \ --no-cookies \ --header "Cookie: oraclelicense=accept-securebackup-cookie" \ http://download.oracle.com/otn-pub/java/jdk/7u45-b18/jdk-7u45-linux-x64.rpm \ -O jdk-7u45-linux-x64.rpm | |
rpm -ivh jdk-7u45-linux-x64.rpm | |
# update the installed java as the latest version using alternatives | |
alternatives --install /usr/bin/java java /usr/java/jdk1.7.0_45/bin/java 200000 | |
#install git | |
yum -y install git | |
#install spark | |
wget http://apache.mirrors.hoobly.com/spark/spark-1.3.0/spark-1.3.0.tgz | |
tar -xzvf spark-1.3.0.tgz | |
cd spark-1.3.0 | |
sbt update | |
sbt package | |
#install sbt | |
curl https://bintray.com/sbt/rpm/rpm | sudo tee /etc/yum.repos.d/bintray-sbt-rpm.repo | |
sudo yum -y install sbt | |
#zookeeper installation(standalaone) | |
#Download | |
wget http://mirror.tcpdiag.net/apache/zookeeper/stable/zookeeper-3.4.6.tar.gz | |
tar -xzvf zookeeper-3.4.6.tar.gz | |
nano conf/zoo.cfg | |
#add below content | |
tickTime=2000 | |
dataDir=/var/zookeeper | |
clientPort=2181 | |
#start zookeeper | |
bin/zkServer.sh start | |
#Smoke test: connection to zookeeper | |
bin/zkCli.sh 127.0.0.1:2181 | |
#Kafka installation | |
#make sure you have right version of scala | |
#make sure to Download "binary version" of Kafka for Scala Version | |
#Below is for scala 2.11.6 and kafka 0.8.2.1 | |
wget http://mirror.olnevhost.net/pub/apache/kafka/0.8.2.1/kafka_2.11-0.8.2.1.tgz | |
tar -xzvf kafka_2.11-0.8.2.1.tgz | |
cd kafka_2.11-0.8.2.1 | |
sbt update | |
sbt package | |
sbt assembly-package-dependency (Dont worry if, this fails) | |
#change the dat dir in config/zookeeper.conf | |
dataDir=/var/zookeeper | |
#also change port from 2181 to 2182(anything else) | |
#start the kafka server | |
bin/zookeeper-server-start.sh config/zookeeper.properties | |
bin/kafka-server-start.sh config/server.properties | |
#create Topic | |
bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic test --partitions 1 --replication-factor 1 | |
#Test | |
bin/kafka-list-topic.sh --zookeeper localhost:2181 | |
#run Producer | |
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test | |
#Start Consumer | |
bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning | |
#bin/spark-shell | |
import org.apache.spark.streaming.kafka._ | |
val kafkaStream = KafkaUtils.createStream(streamingContext, | |
[ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume]) | |
#example | |
/* | |
* Licensed to the Apache Software Foundation (ASF) under one or more | |
* contributor license agreements. See the NOTICE file distributed with | |
* this work for additional information regarding copyright ownership. | |
* The ASF licenses this file to You under the Apache License, Version 2.0 | |
* (the "License"); you may not use this file except in compliance with | |
* the License. You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
package org.apache.spark.examples.streaming | |
import java.util.Properties | |
import kafka.producer._ | |
import org.apache.spark.streaming._ | |
import org.apache.spark.streaming.kafka._ | |
import org.apache.spark.SparkConf | |
/** | |
* Consumes messages from one or more topics in Kafka and does wordcount. | |
* Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads> | |
* <zkQuorum> is a list of one or more zookeeper servers that make quorum | |
* <group> is the name of kafka consumer group | |
* <topics> is a list of one or more kafka topics to consume from | |
* <numThreads> is the number of threads the kafka consumer should use | |
* | |
* Example: | |
* `$ bin/run-example \ | |
* org.apache.spark.examples.streaming.KafkaWordCount zoo01,zoo02,zoo03 \ | |
* my-consumer-group topic1,topic2 1` | |
*/ | |
object KafkaWordCount { | |
def main(args: Array[String]) { | |
if (args.length < 4) { | |
System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>") | |
System.exit(1) | |
} | |
StreamingExamples.setStreamingLogLevels() | |
val Array(zkQuorum, group, topics, numThreads) = args | |
val sparkConf = new SparkConf().setAppName("KafkaWordCount") | |
val ssc = new StreamingContext(sparkConf, Seconds(2)) | |
ssc.checkpoint("checkpoint") | |
val topicMap = topics.split(",").map((_,numThreads.toInt)).toMap | |
val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2) | |
val words = lines.flatMap(_.split(" ")) | |
val wordCounts = words.map(x => (x, 1L)) | |
.reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2) | |
wordCounts.print() | |
ssc.start() | |
ssc.awaitTermination() | |
} | |
} | |
// Produces some random words between 1 and 100. | |
object KafkaWordCountProducer { | |
def main(args: Array[String]) { | |
if (args.length < 4) { | |
System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " + | |
"<messagesPerSec> <wordsPerMessage>") | |
System.exit(1) | |
} | |
val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args | |
// Zookeeper connection properties | |
val props = new Properties() | |
props.put("metadata.broker.list", brokers) | |
props.put("serializer.class", "kafka.serializer.StringEncoder") | |
val config = new ProducerConfig(props) | |
val producer = new Producer[String, String](config) | |
// Send some messages | |
while(true) { | |
val messages = (1 to messagesPerSec.toInt).map { messageNum => | |
val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString) | |
.mkString(" ") | |
new KeyedMessage[String, String](topic, str) | |
}.toArray | |
producer.send(messages: _*) | |
Thread.sleep(100) | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment