Last active
February 19, 2020 08:31
-
-
Save namakemono/b74547e82ef9307da9c29057c650cdf1 to your computer and use it in GitHub Desktop.
Implementation of ESIM(Enhanced LSTM for Natural Language Inference)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Implementation of ESIM(Enhanced LSTM for Natural Language Inference) | |
https://arxiv.org/abs/1609.06038 | |
""" | |
import numpy as np | |
from keras.layers import * | |
from keras.activations import softmax | |
from keras.models import Model | |
def StaticEmbedding(embedding_matrix): | |
in_dim, out_dim = embedding_matrix.shape | |
return Embedding(in_dim, out_dim, weights=[embedding_matrix], trainable=False) | |
def subtract(input_1, input_2): | |
minus_input_2 = Lambda(lambda x: -x)(input_2) | |
return add([input_1, minus_input_2]) | |
def aggregate(input_1, input_2, num_dense=300, dropout_rate=0.5): | |
feat1 = concatenate([GlobalAvgPool1D()(input_1), GlobalMaxPool1D()(input_1)]) | |
feat2 = concatenate([GlobalAvgPool1D()(input_2), GlobalMaxPool1D()(input_2)]) | |
x = concatenate([feat1, feat2]) | |
x = BatchNormalization()(x) | |
x = Dense(num_dense, activation='relu')(x) | |
x = BatchNormalization()(x) | |
x = Dropout(dropout_rate)(x) | |
x = Dense(num_dense, activation='relu')(x) | |
x = BatchNormalization()(x) | |
x = Dropout(dropout_rate)(x) | |
return x | |
def align(input_1, input_2): | |
attention = Dot(axes=-1)([input_1, input_2]) | |
w_att_1 = Lambda(lambda x: softmax(x, axis=1))(attention) | |
w_att_2 = Permute((2,1))(Lambda(lambda x: softmax(x, axis=2))(attention)) | |
in1_aligned = Dot(axes=1)([w_att_1, input_1]) | |
in2_aligned = Dot(axes=1)([w_att_2, input_2]) | |
return in1_aligned, in2_aligned | |
def build_model(embedding_matrix, num_class=1, max_length=30, lstm_dim=300): | |
q1 = Input(shape=(max_length,)) | |
q2 = Input(shape=(max_length,)) | |
# Embedding | |
embedding = StaticEmbedding(embedding_matrix) | |
q1_embed = BatchNormalization(axis=2)(embedding(q1)) | |
q2_embed = BatchNormalization(axis=2)(embedding(q2)) | |
# Encoding | |
encode = Bidirectional(LSTM(lstm_dim, return_sequences=True)) | |
q1_encoded = encode(q1_embed) | |
q2_encoded = encode(q2_embed) | |
# Alignment | |
q1_aligned, q2_aligned = align(q1_encoded, q2_encoded) | |
# Compare | |
q1_combined = concatenate([q1_encoded, q2_aligned, subtract(q1_encoded, q2_aligned), multiply([q1_encoded, q2_aligned])]) | |
q2_combined = concatenate([q2_encoded, q1_aligned, subtract(q2_encoded, q1_aligned), multiply([q2_encoded, q1_aligned])]) | |
compare = Bidirectional(LSTM(lstm_dim, return_sequences=True)) | |
q1_compare = compare(q1_combined) | |
q2_compare = compare(q2_combined) | |
# Aggregate | |
x = aggregate(q1_compare, q2_compare) | |
x = Dense(num_class, activation='sigmoid')(x) | |
return Model(inputs=[q1, q2], outputs=x) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi.
Are you sure about the accuracy of the attention code?
This code is accuracy 86.33 on the SNLI data.
Please check the attention code?