Created
November 21, 2015 18:48
-
-
Save nandor/e709e50be0e02c970f5a to your computer and use it in GitHub Desktop.
Median Cut Light Proble Sampling
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python2 | |
import cv2 as cv | |
import numpy as np | |
import sys | |
SIZE = (640, 480) | |
def m(p, q, f): | |
"""Compute the pq moment.""" | |
if p == 0 and q == 0: | |
return np.sum(f) | |
if p == 1: | |
sum = 0 | |
for index, e in np.ndenumerate(f): | |
x, y = index | |
sum += x * e | |
return sum | |
if q == 1: | |
sum = 0 | |
for index, e in np.ndenumerate(f): | |
x, y = index | |
sum += y * e | |
return sum | |
return 0 | |
def cut(rgb, gray, maxdepth=7): | |
"""Runs the median cut algorithm.""" | |
# Compute the cumulative sums. | |
sums = np.cumsum(gray, axis=0, dtype=np.uint) | |
sums = np.cumsum(sums, axis=1, dtype=np.uint) | |
# Clone the rgb image. | |
out = np.copy(rgb) | |
def cut_rect(x0, y0, x1, y1, depth=0): | |
"""Recursively splits a rectangle into areas of equal sum.""" | |
if depth > maxdepth: | |
sliceRGB = rgb[x0:x1, y0:y1] | |
sliceGray = gray[x0:x1, y0:y1] | |
# Find the centroid. | |
m00 = m(0, 0, sliceGray) | |
cx = x0 + int(m(1, 0, sliceGray) / m00) | |
cy = y0 + int(m(0, 1, sliceGray) / m00) | |
# Draw a circle with the extracted diffuse colour. | |
diff = np.mean(sliceRGB, axis=(0, 1)) | |
colour = (int(diff[0]), int(diff[1]), int(diff[2])) | |
cv.circle(out, (cy, cx), 4, (0, 0, 0)) | |
cv.circle(out, (cy, cx), 3, colour, -1) | |
return | |
total = sums[x1, y1] + sums[x0, y0] - sums[x0, y1] - sums[x1, y0] | |
if x1 - x0 > y1 - y0: | |
# Cut along y. | |
best_x = x0 | |
best_d = sys.maxint | |
for x in range(x0, x1 + 1): | |
sum = int(sums[ x, y1] + sums[x0, y0] - sums[x0, y1] - sums[ x, y0]) | |
if abs(2 * sum - total) < best_d: | |
best_d = abs(2 * sum - total) | |
best_x = x | |
cv.line(out, (y0, best_x), (y1, best_x), (0, 0, 255)) | |
cut_rect(x0, y0, best_x, y1, depth + 1) | |
cut_rect(best_x, y0, x1, y1, depth + 1) | |
else: | |
# Cut along x. | |
best_y = y0 | |
best_d = sys.maxint | |
for y in range(y0, y1 + 1): | |
sum = int(sums[x1, y] + sums[x0, y0] - sums[x0, y] - sums[x1, y0]) | |
if abs(2 * sum - total) < best_d: | |
best_d = abs(2 * sum - total) | |
best_y = y | |
cv.line(out, (best_y, x0), (best_y, x1), (0, 0, 255)) | |
cut_rect(x0, y0, x1, best_y, depth + 1) | |
cut_rect(x0, best_y, x1, y1, depth + 1) | |
# Start the algorithm, covering the entire image. | |
cut_rect(0, 0, gray.shape[0] - 1, gray.shape[1] - 1) | |
return out | |
def main(file): | |
"""Entry point of the script.""" | |
image = cv.resize(cv.imread(file, cv.IMREAD_COLOR), SIZE) | |
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) | |
image = cut(image, gray) | |
cv.imshow('output', image) | |
cv.imwrite('output.png', image) | |
while cv.waitKey(1) != ord('q'): pass | |
if __name__ == '__main__': | |
main(sys.argv[1] if len(sys.argv) > 1 else 'lab.jpeg') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment