yum install gcc-c++
Download CMake from: https://cmake.org/download/
wget https://cmake.org/files/v3.12/cmake-3.12.3.tar.gz
import wandb | |
model_profile_str = f'{args.model}_{args.wider_factor}Xwider_{args.dataset}' | |
wandb_proiject_name = "model folding" | |
experiment_name = f"train_{model_profile_str}" | |
run = wandb.init(project=wandb_proiject_name, name=experiment_name, entity="naguoyu", | |
config={"dataset":args.dataset}, | |
) |
""" | |
@File : fast_torchvision_dataloader.py | |
@Author: Dong Wang | |
@Date : 2024/06/25 | |
@Description : a fast image dataloader for Pytorch models. It tries to use FFCV to speed up your dataloader for vision tasks. | |
You need first install FFCV in your Python ENV and run prepare_ffcv_dataset.py to prepare datasets in FFCV. | |
""" | |
import os | |
from torch.utils.data import DataLoader |
# Go to https://docs.conda.io/en/latest/miniconda.html and choose the suitable file link | |
wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh | |
# install Miniconda | |
bash Miniconda3-py37_4.12.0-Linux-x86_64.sh | |
conda create -n env_name python=3.7 | |
conda activate env_name | |
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch |
panic(cpu 1 caller 0xfffffe0026801790): watchdog timeout: no checkins from watchdogd in 93 seconds (127 total checkins since monitoring last enabled) | |
Debugger message: panic | |
Memory ID: 0x6 | |
OS release type: User | |
OS version: 22C65 | |
Kernel version: Darwin Kernel Version 22.2.0: Fri Nov 11 02:04:44 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T8103 | |
Fileset Kernelcache UUID: ADB288150AFF2B26A022D2179A26F30C | |
Kernel UUID: D43063DF-7FAB-3E39-9807-2FC6A0C7F76A | |
Boot session UUID: BD64D3CE-D999-44A9-A66B-88DAF57DAA20 | |
iBoot version: iBoot-8419.60.44 |
hyper_output = [] | |
with tqdm(range(-180, 181, 10), position=0) as t: | |
for x in t: | |
for y in tqdm(range(-180, 181, 10), disable=True): | |
for z in tqdm(range(-180, 181, 10), disable=True): | |
angles = torch.tensor([x,y,z])/180*torch.pi | |
Hyper_x = transform_angles(angles=angles).to(device=gpu_computation) | |
hyper_output.append(model.hyper_stack(Hyper_x).cpu().detach().numpy()) |
git clone https://github.com/nanguoyu/GenoCAE.git | |
cd GenoCAE/ | |
docker build -t gcae/genocae:build -f docker/build.dockerfile . | |
docker run -it --rm -v ${PWD}:/workspace gcae/genocae:build python3 run_gcae.py --help |
apt-get update && apt-get upgrade -y &&\ | |
apt-get install -y wget \ | |
build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libreadline-dev libffi-dev | |
wget https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz &&\ | |
tar -xf Python-3.8.0.tgz &&\ | |
cd Python-3.8.0 &&\ | |
./configure --enable-optimizations &&\ | |
make -j8 &&\ |
yum install gcc-c++
wget https://cmake.org/files/v3.12/cmake-3.12.3.tar.gz
sudo apt-get install qt5-default | |
sudo apt-get install opencl-headers | |
sudo pip install pylint | |
# Install minimal prerequisites (Ubuntu 18.04 as reference) | |
sudo apt update && sudo apt install -y cmake g++ wget unzip | |
# Download and unpack sources | |
wget -O opencv.zip https://github.com/opencv/opencv/archive/master.zip | |
wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/master.zip | |
unzip opencv.zip | |
unzip opencv_contrib.zip |
mkdir coco | |
cd coco | |
mkdir images | |
cd images | |
wget -c http://images.cocodataset.org/zips/train2017.zip | |
wget -c http://images.cocodataset.org/zips/val2017.zip | |
wget -c http://images.cocodataset.org/zips/test2017.zip | |
wget -c http://images.cocodataset.org/zips/unlabeled2017.zip |