Skip to content

Instantly share code, notes, and snippets.

@nanpuhaha
Forked from ptrstpp950/preRequestScript.js
Created February 9, 2023 23:51
Show Gist options
  • Save nanpuhaha/8d0c2d9669000762f66447055f263e93 to your computer and use it in GitHub Desktop.
Save nanpuhaha/8d0c2d9669000762f66447055f263e93 to your computer and use it in GitHub Desktop.
Calculate TOTP in Postman
//Article about TOTP on my blog https://stapp.space/generate-totp-in-postman/
/**
* @preserve A JavaScript implementation of the SHA family of hashes, as
* defined in FIPS PUB 180-4 and FIPS PUB 202, as well as the corresponding
* HMAC implementation as defined in FIPS PUB 198a
*
* Copyright Brian Turek 2008-2017
* Distributed under the BSD License
* See http://caligatio.github.com/jsSHA/ for more information
*
* Several functions taken from Paul Johnston
*/
/*jslint
bitwise: true, multivar: true, for: true, this: true, sub: true, esversion: 3
*/
/**
* SUPPORTED_ALGS is the stub for a compile flag that will cause pruning of
* functions that are not needed when a limited number of SHA families are
* selected
*
* @define {number} ORed value of SHA variants to be supported
* 1 = SHA-1, 2 = SHA-224/SHA-256, 4 = SHA-384/SHA-512, 8 = SHA3
*/
var SUPPORTED_ALGS = 8 | 4 | 2 | 1;
var X={};
(function (global)
{
"use strict";
/* Globals */
var TWO_PWR_32 = 4294967296;
/**
* Int_64 is a object for 2 32-bit numbers emulating a 64-bit number
*
* @private
* @constructor
* @this {Int_64}
* @param {number} msint_32 The most significant 32-bits of a 64-bit number
* @param {number} lsint_32 The least significant 32-bits of a 64-bit number
*/
function Int_64(msint_32, lsint_32)
{
this.highOrder = msint_32;
this.lowOrder = lsint_32;
}
/**
* Convert a string to an array of big-endian words
*
* There is a known bug with an odd number of existing bytes and using a
* UTF-16 encoding. However, this function is used such that the existing
* bytes are always a result of a previous UTF-16 str2packed call and
* therefore there should never be an odd number of existing bytes
*
* @private
* @param {string} str String to be converted to binary representation
* @param {string} utfType The Unicode type, UTF8 or UTF16BE, UTF16LE, to
* use to encode the source string
* @param {Array<number>} existingPacked A packed int array of bytes to
* append the results to
* @param {number} existingPackedLen The number of bits in the existingPacked
* array
* @param {number} bigEndianMod Modifier for whether hash function is
* big or small endian
* @return {{value : Array<number>, binLen : number}} Hash list where
* "value" contains the output number array and "binLen" is the binary
* length of "value"
*/
function str2packed(str, utfType, existingPacked, existingPackedLen, bigEndianMod)
{
var packed, codePnt, codePntArr, byteCnt = 0, i, j, existingByteLen,
intOffset, byteOffset, shiftModifier, transposeBytes;
packed = existingPacked || [0];
existingPackedLen = existingPackedLen || 0;
existingByteLen = existingPackedLen >>> 3;
if ("UTF8" === utfType)
{
shiftModifier = (bigEndianMod === -1) ? 3 : 0;
for (i = 0; i < str.length; i += 1)
{
codePnt = str.charCodeAt(i);
codePntArr = [];
if (0x80 > codePnt)
{
codePntArr.push(codePnt);
}
else if (0x800 > codePnt)
{
codePntArr.push(0xC0 | (codePnt >>> 6));
codePntArr.push(0x80 | (codePnt & 0x3F));
}
else if ((0xd800 > codePnt) || (0xe000 <= codePnt)) {
codePntArr.push(
0xe0 | (codePnt >>> 12),
0x80 | ((codePnt >>> 6) & 0x3f),
0x80 | (codePnt & 0x3f)
);
}
else
{
i += 1;
codePnt = 0x10000 + (((codePnt & 0x3ff) << 10) | (str.charCodeAt(i) & 0x3ff));
codePntArr.push(
0xf0 | (codePnt >>> 18),
0x80 | ((codePnt >>> 12) & 0x3f),
0x80 | ((codePnt >>> 6) & 0x3f),
0x80 | (codePnt & 0x3f)
);
}
for (j = 0; j < codePntArr.length; j += 1)
{
byteOffset = byteCnt + existingByteLen;
intOffset = byteOffset >>> 2;
while (packed.length <= intOffset)
{
packed.push(0);
}
/* Known bug kicks in here */
packed[intOffset] |= codePntArr[j] << (8 * (shiftModifier + bigEndianMod * (byteOffset % 4)));
byteCnt += 1;
}
}
}
else if (("UTF16BE" === utfType) || "UTF16LE" === utfType)
{
shiftModifier = (bigEndianMod === -1) ? 2 : 0;
/* Internally strings are UTF-16BE so transpose bytes under two conditions:
* need LE and not switching endianness due to SHA-3
* need BE and switching endianness due to SHA-3 */
transposeBytes = (("UTF16LE" === utfType) && (bigEndianMod !== 1)) || (("UTF16LE" !== utfType) && (bigEndianMod === 1));
for (i = 0; i < str.length; i += 1)
{
codePnt = str.charCodeAt(i);
if (transposeBytes === true)
{
j = codePnt & 0xFF;
codePnt = (j << 8) | (codePnt >>> 8);
}
byteOffset = byteCnt + existingByteLen;
intOffset = byteOffset >>> 2;
while (packed.length <= intOffset)
{
packed.push(0);
}
packed[intOffset] |= codePnt << (8 * (shiftModifier + bigEndianMod * (byteOffset % 4)));
byteCnt += 2;
}
}
return {"value" : packed, "binLen" : byteCnt * 8 + existingPackedLen};
}
/**
* Convert a hex string to an array of big-endian words
*
* @private
* @param {string} str String to be converted to binary representation
* @param {Array<number>} existingPacked A packed int array of bytes to
* append the results to
* @param {number} existingPackedLen The number of bits in the existingPacked
* array
* @param {number} bigEndianMod Modifier for whether hash function is
* big or small endian
* @return {{value : Array<number>, binLen : number}} Hash list where
* "value" contains the output number array and "binLen" is the binary
* length of "value"
*/
function hex2packed(str, existingPacked, existingPackedLen, bigEndianMod)
{
var packed, length = str.length, i, num, intOffset, byteOffset,
existingByteLen, shiftModifier;
if (0 !== (length % 2))
{
throw new Error("String of HEX type must be in byte increments");
}
packed = existingPacked || [0];
existingPackedLen = existingPackedLen || 0;
existingByteLen = existingPackedLen >>> 3;
shiftModifier = (bigEndianMod === -1) ? 3 : 0;
for (i = 0; i < length; i += 2)
{
num = parseInt(str.substr(i, 2), 16);
if (!isNaN(num))
{
byteOffset = (i >>> 1) + existingByteLen;
intOffset = byteOffset >>> 2;
while (packed.length <= intOffset)
{
packed.push(0);
}
packed[intOffset] |= num << (8 * (shiftModifier + bigEndianMod * (byteOffset % 4)));
}
else
{
throw new Error("String of HEX type contains invalid characters");
}
}
return {"value" : packed, "binLen" : length * 4 + existingPackedLen};
}
/**
* Convert a string of raw bytes to an array of big-endian words
*
* @private
* @param {string} str String of raw bytes to be converted to binary representation
* @param {Array<number>} existingPacked A packed int array of bytes to
* append the results to
* @param {number} existingPackedLen The number of bits in the existingPacked
* array
* @param {number} bigEndianMod Modifier for whether hash function is
* big or small endian
* @return {{value : Array<number>, binLen : number}} Hash list where
* "value" contains the output number array and "binLen" is the binary
* length of "value"
*/
function bytes2packed(str, existingPacked, existingPackedLen, bigEndianMod)
{
var packed, codePnt, i, existingByteLen, intOffset,
byteOffset, shiftModifier;
packed = existingPacked || [0];
existingPackedLen = existingPackedLen || 0;
existingByteLen = existingPackedLen >>> 3;
shiftModifier = (bigEndianMod === -1) ? 3 : 0;
for (i = 0; i < str.length; i += 1)
{
codePnt = str.charCodeAt(i);
byteOffset = i + existingByteLen;
intOffset = byteOffset >>> 2;
if (packed.length <= intOffset)
{
packed.push(0);
}
packed[intOffset] |= codePnt << (8 * (shiftModifier + bigEndianMod * (byteOffset % 4)));
}
return {"value" : packed, "binLen" : str.length * 8 + existingPackedLen};
}
/**
* Convert a base-64 string to an array of big-endian words
*
* @private
* @param {string} str String to be converted to binary representation
* @param {Array<number>} existingPacked A packed int array of bytes to
* append the results to
* @param {number} existingPackedLen The number of bits in the existingPacked
* array
* @param {number} bigEndianMod Modifier for whether hash function is
* big or small endian
* @return {{value : Array<number>, binLen : number}} Hash list where
* "value" contains the output number array and "binLen" is the binary
* length of "value"
*/
function b642packed(str, existingPacked, existingPackedLen, bigEndianMod)
{
var packed, byteCnt = 0, index, i, j, tmpInt, strPart, firstEqual,
b64Tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",
existingByteLen, intOffset, byteOffset, shiftModifier;
if (-1 === str.search(/^[a-zA-Z0-9=+\/]+$/))
{
throw new Error("Invalid character in base-64 string");
}
firstEqual = str.indexOf("=");
str = str.replace(/\=/g, "");
if ((-1 !== firstEqual) && (firstEqual < str.length))
{
throw new Error("Invalid '=' found in base-64 string");
}
packed = existingPacked || [0];
existingPackedLen = existingPackedLen || 0;
existingByteLen = existingPackedLen >>> 3;
shiftModifier = (bigEndianMod === -1) ? 3 : 0;
for (i = 0; i < str.length; i += 4)
{
strPart = str.substr(i, 4);
tmpInt = 0;
for (j = 0; j < strPart.length; j += 1)
{
index = b64Tab.indexOf(strPart[j]);
tmpInt |= index << (18 - (6 * j));
}
for (j = 0; j < strPart.length - 1; j += 1)
{
byteOffset = byteCnt + existingByteLen;
intOffset = byteOffset >>> 2;
while (packed.length <= intOffset)
{
packed.push(0);
}
packed[intOffset] |= ((tmpInt >>> (16 - (j * 8))) & 0xFF) <<
(8 * (shiftModifier + bigEndianMod * (byteOffset % 4)));
byteCnt += 1;
}
}
return {"value" : packed, "binLen" : byteCnt * 8 + existingPackedLen};
}
/**
* Convert an ArrayBuffer to an array of big-endian words
*
* @private
* @param {ArrayBuffer} arr ArrayBuffer to be converted to binary
* representation
* @param {Array<number>} existingPacked A packed int array of bytes to
* append the results to
* @param {number} existingPackedLen The number of bits in the existingPacked
* array
* @param {number} bigEndianMod Modifier for whether hash function is
* big or small endian
* @return {{value : Array<number>, binLen : number}} Hash list where
* "value" contains the output number array and "binLen" is the binary
* length of "value"
*/
function arraybuffer2packed(arr, existingPacked, existingPackedLen, bigEndianMod)
{
var packed, i, existingByteLen, intOffset, byteOffset, shiftModifier, arrView;
packed = existingPacked || [0];
existingPackedLen = existingPackedLen || 0;
existingByteLen = existingPackedLen >>> 3;
shiftModifier = (bigEndianMod === -1) ? 3 : 0;
arrView = new Uint8Array(arr);
for (i = 0; i < arr.byteLength; i += 1)
{
byteOffset = i + existingByteLen;
intOffset = byteOffset >>> 2;
if (packed.length <= intOffset)
{
packed.push(0);
}
packed[intOffset] |= arrView[i] << (8 * (shiftModifier + bigEndianMod * (byteOffset % 4)));
}
return {"value" : packed, "binLen" : arr.byteLength * 8 + existingPackedLen};
}
/**
* Convert an array of big-endian words to a hex string.
*
* @private
* @param {Array<number>} packed Array of integers to be converted to
* hexidecimal representation
* @param {number} outputLength Length of output in bits
* @param {number} bigEndianMod Modifier for whether hash function is
* big or small endian
* @param {{outputUpper : boolean, b64Pad : string}} formatOpts Hash list
* containing validated output formatting options
* @return {string} Hexidecimal representation of the parameter in string
* form
*/
function packed2hex(packed, outputLength, bigEndianMod, formatOpts)
{
var hex_tab = "0123456789abcdef", str = "",
length = outputLength / 8, i, srcByte, shiftModifier;
shiftModifier = (bigEndianMod === -1) ? 3 : 0;
for (i = 0; i < length; i += 1)
{
/* The below is more than a byte but it gets taken care of later */
srcByte = packed[i >>> 2] >>> (8 * (shiftModifier + bigEndianMod * (i % 4)));
str += hex_tab.charAt((srcByte >>> 4) & 0xF) +
hex_tab.charAt(srcByte & 0xF);
}
return (formatOpts["outputUpper"]) ? str.toUpperCase() : str;
}
/**
* Convert an array of big-endian words to a base-64 string
*
* @private
* @param {Array<number>} packed Array of integers to be converted to
* base-64 representation
* @param {number} outputLength Length of output in bits
* @param {number} bigEndianMod Modifier for whether hash function is
* big or small endian
* @param {{outputUpper : boolean, b64Pad : string}} formatOpts Hash list
* containing validated output formatting options
* @return {string} Base-64 encoded representation of the parameter in
* string form
*/
function packed2b64(packed, outputLength, bigEndianMod, formatOpts)
{
var str = "", length = outputLength / 8, i, j, triplet, int1, int2, shiftModifier,
b64Tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
shiftModifier = (bigEndianMod === -1) ? 3 : 0;
for (i = 0; i < length; i += 3)
{
int1 = ((i + 1) < length) ? packed[(i + 1) >>> 2] : 0;
int2 = ((i + 2) < length) ? packed[(i + 2) >>> 2] : 0;
triplet = (((packed[i >>> 2] >>> (8 * (shiftModifier + bigEndianMod * (i % 4)))) & 0xFF) << 16) |
(((int1 >>> (8 * (shiftModifier + bigEndianMod * ((i + 1) % 4)))) & 0xFF) << 8) |
((int2 >>> (8 * (shiftModifier + bigEndianMod * ((i + 2) % 4)))) & 0xFF);
for (j = 0; j < 4; j += 1)
{
if (i * 8 + j * 6 <= outputLength)
{
str += b64Tab.charAt((triplet >>> 6 * (3 - j)) & 0x3F);
}
else
{
str += formatOpts["b64Pad"];
}
}
}
return str;
}
/**
* Convert an array of big-endian words to raw bytes string
*
* @private
* @param {Array<number>} packed Array of integers to be converted to
* a raw bytes string representation
* @param {number} outputLength Length of output in bits
* @param {number} bigEndianMod Modifier for whether hash function is
* big or small endian
* @return {string} Raw bytes representation of the parameter in string
* form
*/
function packed2bytes(packed, outputLength, bigEndianMod)
{
var str = "", length = outputLength / 8, i, srcByte, shiftModifier;
shiftModifier = (bigEndianMod === -1) ? 3 : 0;
for (i = 0; i < length; i += 1)
{
srcByte = (packed[i >>> 2] >>> (8 * (shiftModifier + bigEndianMod * (i % 4)))) & 0xFF;
str += String.fromCharCode(srcByte);
}
return str;
}
/**
* Convert an array of big-endian words to an ArrayBuffer
*
* @private
* @param {Array<number>} packed Array of integers to be converted to
* an ArrayBuffer
* @param {number} outputLength Length of output in bits
* @param {number} bigEndianMod Modifier for whether hash function is
* big or small endian
* @return {ArrayBuffer} Raw bytes representation of the parameter in an
* ArrayBuffer
*/
function packed2arraybuffer(packed, outputLength, bigEndianMod)
{
var length = outputLength / 8, i, retVal = new ArrayBuffer(length), shiftModifier, arrView;
arrView = new Uint8Array(retVal);
shiftModifier = (bigEndianMod === -1) ? 3 : 0;
for (i = 0; i < length; i += 1)
{
arrView[i] = (packed[i >>> 2] >>> (8 * (shiftModifier + bigEndianMod * (i % 4)))) & 0xFF;
}
return retVal;
}
/**
* Validate hash list containing output formatting options, ensuring
* presence of every option or adding the default value
*
* @private
* @param {{outputUpper : (boolean|undefined), b64Pad : (string|undefined),
* shakeLen : (number|undefined)}=} options Hash list of output formatting options
* @return {{outputUpper : boolean, b64Pad : string, shakeLen : number}} Validated
* hash list containing output formatting options
*/
function getOutputOpts(options)
{
var retVal = {"outputUpper" : false, "b64Pad" : "=", "shakeLen" : -1},
outputOptions;
outputOptions = options || {};
retVal["outputUpper"] = outputOptions["outputUpper"] || false;
if (true === outputOptions.hasOwnProperty("b64Pad"))
{
retVal["b64Pad"] = outputOptions["b64Pad"];
}
if ((true === outputOptions.hasOwnProperty("shakeLen")) && ((8 & SUPPORTED_ALGS) !== 0))
{
if (outputOptions["shakeLen"] % 8 !== 0)
{
throw new Error("shakeLen must be a multiple of 8");
}
retVal["shakeLen"] = outputOptions["shakeLen"];
}
if ("boolean" !== typeof(retVal["outputUpper"]))
{
throw new Error("Invalid outputUpper formatting option");
}
if ("string" !== typeof(retVal["b64Pad"]))
{
throw new Error("Invalid b64Pad formatting option");
}
return retVal;
}
/**
* Function that takes an input format and UTF encoding and returns the
* appropriate function used to convert the input.
*
* @private
* @param {string} format The format of the string to be converted
* @param {string} utfType The string encoding to use (UTF8, UTF16BE,
* UTF16LE)
* @param {number} bigEndianMod Modifier for whether hash function is
* big or small endian
* @return {function((string|ArrayBuffer), Array<number>=, number=): {value :
* Array<number>, binLen : number}} Function that will convert an input
* string to a packed int array
*/
function getStrConverter(format, utfType, bigEndianMod)
{
var retVal;
/* Validate encoding */
switch (utfType)
{
case "UTF8":
/* Fallthrough */
case "UTF16BE":
/* Fallthrough */
case "UTF16LE":
/* Fallthrough */
break;
default:
throw new Error("encoding must be UTF8, UTF16BE, or UTF16LE");
}
/* Map inputFormat to the appropriate converter */
switch (format)
{
case "HEX":
/**
* @param {string} str String of raw bytes to be converted to binary representation
* @param {Array<number>} existingBin A packed int array of bytes to
* append the results to
* @param {number} existingBinLen The number of bits in the existingBin
* array
* @return {{value : Array<number>, binLen : number}} Hash list where
* "value" contains the output number array and "binLen" is the binary
* length of "value"
*/
retVal = function(str, existingBin, existingBinLen)
{
return hex2packed(str, existingBin, existingBinLen, bigEndianMod);
};
break;
case "TEXT":
/**
* @param {string} str String of raw bytes to be converted to binary representation
* @param {Array<number>} existingBin A packed int array of bytes to
* append the results to
* @param {number} existingBinLen The number of bits in the existingBin
* array
* @return {{value : Array<number>, binLen : number}} Hash list where
* "value" contains the output number array and "binLen" is the binary
* length of "value"
*/
retVal = function(str, existingBin, existingBinLen)
{
return str2packed(str, utfType, existingBin, existingBinLen, bigEndianMod);
};
break;
case "B64":
/**
* @param {string} str String of raw bytes to be converted to binary representation
* @param {Array<number>} existingBin A packed int array of bytes to
* append the results to
* @param {number} existingBinLen The number of bits in the existingBin
* array
* @return {{value : Array<number>, binLen : number}} Hash list where
* "value" contains the output number array and "binLen" is the binary
* length of "value"
*/
retVal = function(str, existingBin, existingBinLen)
{
return b642packed(str, existingBin, existingBinLen, bigEndianMod);
};
break;
case "BYTES":
/**
* @param {string} str String of raw bytes to be converted to binary representation
* @param {Array<number>} existingBin A packed int array of bytes to
* append the results to
* @param {number} existingBinLen The number of bits in the existingBin
* array
* @return {{value : Array<number>, binLen : number}} Hash list where
* "value" contains the output number array and "binLen" is the binary
* length of "value"
*/
retVal = function(str, existingBin, existingBinLen)
{
return bytes2packed(str, existingBin, existingBinLen, bigEndianMod);
};
break;
case "ARRAYBUFFER":
try {
retVal = new ArrayBuffer(0);
} catch(ignore) {
throw new Error("ARRAYBUFFER not supported by this environment");
}
/**
* @param {ArrayBuffer} arr ArrayBuffer to be converted to binary
* representation
* @param {Array<number>} existingBin A packed int array of bytes to
* append the results to
* @param {number} existingBinLen The number of bits in the existingBin
* array
* @return {{value : Array<number>, binLen : number}} Hash list where
* "value" contains the output number array and "binLen" is the binary
* length of "value"
*/
retVal = function(arr, existingBin, existingBinLen)
{
return arraybuffer2packed(arr, existingBin, existingBinLen, bigEndianMod);
};
break;
default:
throw new Error("format must be HEX, TEXT, B64, BYTES, or ARRAYBUFFER");
}
return retVal;
}
/**
* The 32-bit implementation of circular rotate left
*
* @private
* @param {number} x The 32-bit integer argument
* @param {number} n The number of bits to shift
* @return {number} The x shifted circularly by n bits
*/
function rotl_32(x, n)
{
return (x << n) | (x >>> (32 - n));
}
/**
* The 64-bit implementation of circular rotate left
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @param {number} n The number of bits to shift
* @return {Int_64} The x shifted circularly by n bits
*/
function rotl_64(x, n)
{
if (n > 32)
{
n = n - 32;
return new Int_64(
x.lowOrder << n | x.highOrder >>> (32 - n),
x.highOrder << n | x.lowOrder >>> (32 - n)
);
}
else if (0 !== n)
{
return new Int_64(
x.highOrder << n | x.lowOrder >>> (32 - n),
x.lowOrder << n | x.highOrder >>> (32 - n)
);
}
else
{
return x;
}
}
/**
* The 32-bit implementation of circular rotate right
*
* @private
* @param {number} x The 32-bit integer argument
* @param {number} n The number of bits to shift
* @return {number} The x shifted circularly by n bits
*/
function rotr_32(x, n)
{
return (x >>> n) | (x << (32 - n));
}
/**
* The 64-bit implementation of circular rotate right
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @param {number} n The number of bits to shift
* @return {Int_64} The x shifted circularly by n bits
*/
function rotr_64(x, n)
{
var retVal = null, tmp = new Int_64(x.highOrder, x.lowOrder);
if (32 >= n)
{
retVal = new Int_64(
(tmp.highOrder >>> n) | ((tmp.lowOrder << (32 - n)) & 0xFFFFFFFF),
(tmp.lowOrder >>> n) | ((tmp.highOrder << (32 - n)) & 0xFFFFFFFF)
);
}
else
{
retVal = new Int_64(
(tmp.lowOrder >>> (n - 32)) | ((tmp.highOrder << (64 - n)) & 0xFFFFFFFF),
(tmp.highOrder >>> (n - 32)) | ((tmp.lowOrder << (64 - n)) & 0xFFFFFFFF)
);
}
return retVal;
}
/**
* The 32-bit implementation of shift right
*
* @private
* @param {number} x The 32-bit integer argument
* @param {number} n The number of bits to shift
* @return {number} The x shifted by n bits
*/
function shr_32(x, n)
{
return x >>> n;
}
/**
* The 64-bit implementation of shift right
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @param {number} n The number of bits to shift
* @return {Int_64} The x shifted by n bits
*/
function shr_64(x, n)
{
var retVal = null;
if (32 >= n)
{
retVal = new Int_64(
x.highOrder >>> n,
x.lowOrder >>> n | ((x.highOrder << (32 - n)) & 0xFFFFFFFF)
);
}
else
{
retVal = new Int_64(
0,
x.highOrder >>> (n - 32)
);
}
return retVal;
}
/**
* The 32-bit implementation of the NIST specified Parity function
*
* @private
* @param {number} x The first 32-bit integer argument
* @param {number} y The second 32-bit integer argument
* @param {number} z The third 32-bit integer argument
* @return {number} The NIST specified output of the function
*/
function parity_32(x, y, z)
{
return x ^ y ^ z;
}
/**
* The 32-bit implementation of the NIST specified Ch function
*
* @private
* @param {number} x The first 32-bit integer argument
* @param {number} y The second 32-bit integer argument
* @param {number} z The third 32-bit integer argument
* @return {number} The NIST specified output of the function
*/
function ch_32(x, y, z)
{
return (x & y) ^ (~x & z);
}
/**
* The 64-bit implementation of the NIST specified Ch function
*
* @private
* @param {Int_64} x The first 64-bit integer argument
* @param {Int_64} y The second 64-bit integer argument
* @param {Int_64} z The third 64-bit integer argument
* @return {Int_64} The NIST specified output of the function
*/
function ch_64(x, y, z)
{
return new Int_64(
(x.highOrder & y.highOrder) ^ (~x.highOrder & z.highOrder),
(x.lowOrder & y.lowOrder) ^ (~x.lowOrder & z.lowOrder)
);
}
/**
* The 32-bit implementation of the NIST specified Maj function
*
* @private
* @param {number} x The first 32-bit integer argument
* @param {number} y The second 32-bit integer argument
* @param {number} z The third 32-bit integer argument
* @return {number} The NIST specified output of the function
*/
function maj_32(x, y, z)
{
return (x & y) ^ (x & z) ^ (y & z);
}
/**
* The 64-bit implementation of the NIST specified Maj function
*
* @private
* @param {Int_64} x The first 64-bit integer argument
* @param {Int_64} y The second 64-bit integer argument
* @param {Int_64} z The third 64-bit integer argument
* @return {Int_64} The NIST specified output of the function
*/
function maj_64(x, y, z)
{
return new Int_64(
(x.highOrder & y.highOrder) ^
(x.highOrder & z.highOrder) ^
(y.highOrder & z.highOrder),
(x.lowOrder & y.lowOrder) ^
(x.lowOrder & z.lowOrder) ^
(y.lowOrder & z.lowOrder)
);
}
/**
* The 32-bit implementation of the NIST specified Sigma0 function
*
* @private
* @param {number} x The 32-bit integer argument
* @return {number} The NIST specified output of the function
*/
function sigma0_32(x)
{
return rotr_32(x, 2) ^ rotr_32(x, 13) ^ rotr_32(x, 22);
}
/**
* The 64-bit implementation of the NIST specified Sigma0 function
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @return {Int_64} The NIST specified output of the function
*/
function sigma0_64(x)
{
var rotr28 = rotr_64(x, 28), rotr34 = rotr_64(x, 34),
rotr39 = rotr_64(x, 39);
return new Int_64(
rotr28.highOrder ^ rotr34.highOrder ^ rotr39.highOrder,
rotr28.lowOrder ^ rotr34.lowOrder ^ rotr39.lowOrder);
}
/**
* The 32-bit implementation of the NIST specified Sigma1 function
*
* @private
* @param {number} x The 32-bit integer argument
* @return {number} The NIST specified output of the function
*/
function sigma1_32(x)
{
return rotr_32(x, 6) ^ rotr_32(x, 11) ^ rotr_32(x, 25);
}
/**
* The 64-bit implementation of the NIST specified Sigma1 function
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @return {Int_64} The NIST specified output of the function
*/
function sigma1_64(x)
{
var rotr14 = rotr_64(x, 14), rotr18 = rotr_64(x, 18),
rotr41 = rotr_64(x, 41);
return new Int_64(
rotr14.highOrder ^ rotr18.highOrder ^ rotr41.highOrder,
rotr14.lowOrder ^ rotr18.lowOrder ^ rotr41.lowOrder);
}
/**
* The 32-bit implementation of the NIST specified Gamma0 function
*
* @private
* @param {number} x The 32-bit integer argument
* @return {number} The NIST specified output of the function
*/
function gamma0_32(x)
{
return rotr_32(x, 7) ^ rotr_32(x, 18) ^ shr_32(x, 3);
}
/**
* The 64-bit implementation of the NIST specified Gamma0 function
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @return {Int_64} The NIST specified output of the function
*/
function gamma0_64(x)
{
var rotr1 = rotr_64(x, 1), rotr8 = rotr_64(x, 8), shr7 = shr_64(x, 7);
return new Int_64(
rotr1.highOrder ^ rotr8.highOrder ^ shr7.highOrder,
rotr1.lowOrder ^ rotr8.lowOrder ^ shr7.lowOrder
);
}
/**
* The 32-bit implementation of the NIST specified Gamma1 function
*
* @private
* @param {number} x The 32-bit integer argument
* @return {number} The NIST specified output of the function
*/
function gamma1_32(x)
{
return rotr_32(x, 17) ^ rotr_32(x, 19) ^ shr_32(x, 10);
}
/**
* The 64-bit implementation of the NIST specified Gamma1 function
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @return {Int_64} The NIST specified output of the function
*/
function gamma1_64(x)
{
var rotr19 = rotr_64(x, 19), rotr61 = rotr_64(x, 61),
shr6 = shr_64(x, 6);
return new Int_64(
rotr19.highOrder ^ rotr61.highOrder ^ shr6.highOrder,
rotr19.lowOrder ^ rotr61.lowOrder ^ shr6.lowOrder
);
}
/**
* Add two 32-bit integers, wrapping at 2^32. This uses 16-bit operations
* internally to work around bugs in some JS interpreters.
*
* @private
* @param {number} a The first 32-bit integer argument to be added
* @param {number} b The second 32-bit integer argument to be added
* @return {number} The sum of a + b
*/
function safeAdd_32_2(a, b)
{
var lsw = (a & 0xFFFF) + (b & 0xFFFF),
msw = (a >>> 16) + (b >>> 16) + (lsw >>> 16);
return ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
}
/**
* Add four 32-bit integers, wrapping at 2^32. This uses 16-bit operations
* internally to work around bugs in some JS interpreters.
*
* @private
* @param {number} a The first 32-bit integer argument to be added
* @param {number} b The second 32-bit integer argument to be added
* @param {number} c The third 32-bit integer argument to be added
* @param {number} d The fourth 32-bit integer argument to be added
* @return {number} The sum of a + b + c + d
*/
function safeAdd_32_4(a, b, c, d)
{
var lsw = (a & 0xFFFF) + (b & 0xFFFF) + (c & 0xFFFF) + (d & 0xFFFF),
msw = (a >>> 16) + (b >>> 16) + (c >>> 16) + (d >>> 16) +
(lsw >>> 16);
return ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
}
/**
* Add five 32-bit integers, wrapping at 2^32. This uses 16-bit operations
* internally to work around bugs in some JS interpreters.
*
* @private
* @param {number} a The first 32-bit integer argument to be added
* @param {number} b The second 32-bit integer argument to be added
* @param {number} c The third 32-bit integer argument to be added
* @param {number} d The fourth 32-bit integer argument to be added
* @param {number} e The fifth 32-bit integer argument to be added
* @return {number} The sum of a + b + c + d + e
*/
function safeAdd_32_5(a, b, c, d, e)
{
var lsw = (a & 0xFFFF) + (b & 0xFFFF) + (c & 0xFFFF) + (d & 0xFFFF) +
(e & 0xFFFF),
msw = (a >>> 16) + (b >>> 16) + (c >>> 16) + (d >>> 16) +
(e >>> 16) + (lsw >>> 16);
return ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
}
/**
* Add two 64-bit integers, wrapping at 2^64. This uses 16-bit operations
* internally to work around bugs in some JS interpreters.
*
* @private
* @param {Int_64} x The first 64-bit integer argument to be added
* @param {Int_64} y The second 64-bit integer argument to be added
* @return {Int_64} The sum of x + y
*/
function safeAdd_64_2(x, y)
{
var lsw, msw, lowOrder, highOrder;
lsw = (x.lowOrder & 0xFFFF) + (y.lowOrder & 0xFFFF);
msw = (x.lowOrder >>> 16) + (y.lowOrder >>> 16) + (lsw >>> 16);
lowOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
lsw = (x.highOrder & 0xFFFF) + (y.highOrder & 0xFFFF) + (msw >>> 16);
msw = (x.highOrder >>> 16) + (y.highOrder >>> 16) + (lsw >>> 16);
highOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
return new Int_64(highOrder, lowOrder);
}
/**
* Add four 64-bit integers, wrapping at 2^64. This uses 16-bit operations
* internally to work around bugs in some JS interpreters.
*
* @private
* @param {Int_64} a The first 64-bit integer argument to be added
* @param {Int_64} b The second 64-bit integer argument to be added
* @param {Int_64} c The third 64-bit integer argument to be added
* @param {Int_64} d The fouth 64-bit integer argument to be added
* @return {Int_64} The sum of a + b + c + d
*/
function safeAdd_64_4(a, b, c, d)
{
var lsw, msw, lowOrder, highOrder;
lsw = (a.lowOrder & 0xFFFF) + (b.lowOrder & 0xFFFF) +
(c.lowOrder & 0xFFFF) + (d.lowOrder & 0xFFFF);
msw = (a.lowOrder >>> 16) + (b.lowOrder >>> 16) +
(c.lowOrder >>> 16) + (d.lowOrder >>> 16) + (lsw >>> 16);
lowOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
lsw = (a.highOrder & 0xFFFF) + (b.highOrder & 0xFFFF) +
(c.highOrder & 0xFFFF) + (d.highOrder & 0xFFFF) + (msw >>> 16);
msw = (a.highOrder >>> 16) + (b.highOrder >>> 16) +
(c.highOrder >>> 16) + (d.highOrder >>> 16) + (lsw >>> 16);
highOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
return new Int_64(highOrder, lowOrder);
}
/**
* Add five 64-bit integers, wrapping at 2^64. This uses 16-bit operations
* internally to work around bugs in some JS interpreters.
*
* @private
* @param {Int_64} a The first 64-bit integer argument to be added
* @param {Int_64} b The second 64-bit integer argument to be added
* @param {Int_64} c The third 64-bit integer argument to be added
* @param {Int_64} d The fouth 64-bit integer argument to be added
* @param {Int_64} e The fouth 64-bit integer argument to be added
* @return {Int_64} The sum of a + b + c + d + e
*/
function safeAdd_64_5(a, b, c, d, e)
{
var lsw, msw, lowOrder, highOrder;
lsw = (a.lowOrder & 0xFFFF) + (b.lowOrder & 0xFFFF) +
(c.lowOrder & 0xFFFF) + (d.lowOrder & 0xFFFF) +
(e.lowOrder & 0xFFFF);
msw = (a.lowOrder >>> 16) + (b.lowOrder >>> 16) +
(c.lowOrder >>> 16) + (d.lowOrder >>> 16) + (e.lowOrder >>> 16) +
(lsw >>> 16);
lowOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
lsw = (a.highOrder & 0xFFFF) + (b.highOrder & 0xFFFF) +
(c.highOrder & 0xFFFF) + (d.highOrder & 0xFFFF) +
(e.highOrder & 0xFFFF) + (msw >>> 16);
msw = (a.highOrder >>> 16) + (b.highOrder >>> 16) +
(c.highOrder >>> 16) + (d.highOrder >>> 16) +
(e.highOrder >>> 16) + (lsw >>> 16);
highOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
return new Int_64(highOrder, lowOrder);
}
/**
* XORs two given arguments.
*
* @private
* @param {Int_64} a First argument to be XORed
* @param {Int_64} b Second argument to be XORed
* @return {Int_64} The XOR of the arguments
*/
function xor_64_2(a, b)
{
return new Int_64(
a.highOrder ^ b.highOrder,
a.lowOrder ^ b.lowOrder
);
}
/**
* XORs five given arguments.
*
* @private
* @param {Int_64} a First argument to be XORed
* @param {Int_64} b Second argument to be XORed
* @param {Int_64} c Third argument to be XORed
* @param {Int_64} d Fourth argument to be XORed
* @param {Int_64} e Fifth argument to be XORed
* @return {Int_64} The XOR of the arguments
*/
function xor_64_5(a, b, c, d, e)
{
return new Int_64(
a.highOrder ^ b.highOrder ^ c.highOrder ^ d.highOrder ^ e.highOrder,
a.lowOrder ^ b.lowOrder ^ c.lowOrder ^ d.lowOrder ^ e.lowOrder
);
}
/**
* Returns a clone of the given SHA3 state
*
* @private
* @param {Array<Array<Int_64>>} state The state to be cloned
* @return {Array<Array<Int_64>>} The cloned state
*/
function cloneSHA3State(state) {
var clone = [], i;
for (i = 0; i < 5; i += 1)
{
clone[i] = state[i].slice();
}
return clone;
}
/**
* Gets the state values for the specified SHA variant
*
* @param {string} variant The SHA variant
* @return {Array<number|Int_64|Array<null>>} The initial state values
*/
function getNewState(variant)
{
var retVal = [], H_trunc, H_full, i;
if (("SHA-1" === variant) && ((1 & SUPPORTED_ALGS) !== 0))
{
retVal = [
0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0
];
}
else if ((variant.lastIndexOf("SHA-", 0) === 0) && ((6 & SUPPORTED_ALGS) !== 0))
{
H_trunc = [
0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
];
H_full = [
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
];
switch (variant)
{
case "SHA-224":
retVal = H_trunc;
break;
case "SHA-256":
retVal = H_full;
break;
case "SHA-384":
retVal = [
new Int_64(0xcbbb9d5d, H_trunc[0]),
new Int_64(0x0629a292a, H_trunc[1]),
new Int_64(0x9159015a, H_trunc[2]),
new Int_64(0x0152fecd8, H_trunc[3]),
new Int_64(0x67332667, H_trunc[4]),
new Int_64(0x98eb44a87, H_trunc[5]),
new Int_64(0xdb0c2e0d, H_trunc[6]),
new Int_64(0x047b5481d, H_trunc[7])
];
break;
case "SHA-512":
retVal = [
new Int_64(H_full[0], 0xf3bcc908),
new Int_64(H_full[1], 0x84caa73b),
new Int_64(H_full[2], 0xfe94f82b),
new Int_64(H_full[3], 0x5f1d36f1),
new Int_64(H_full[4], 0xade682d1),
new Int_64(H_full[5], 0x2b3e6c1f),
new Int_64(H_full[6], 0xfb41bd6b),
new Int_64(H_full[7], 0x137e2179)
];
break;
default:
throw new Error("Unknown SHA variant");
}
}
else if (((variant.lastIndexOf("SHA3-", 0) === 0) || (variant.lastIndexOf("SHAKE", 0) === 0)) &&
((8 & SUPPORTED_ALGS) !== 0))
{
for (i = 0; i < 5; i += 1)
{
retVal[i] = [new Int_64(0, 0), new Int_64(0, 0), new Int_64(0, 0), new Int_64(0, 0), new Int_64(0, 0)];
}
}
else
{
throw new Error("No SHA variants supported");
}
return retVal;
}
/**
* Performs a round of SHA-1 hashing over a 512-byte block
*
* @private
* @param {Array<number>} block The binary array representation of the
* block to hash
* @param {Array<number>} H The intermediate H values from a previous
* round
* @return {Array<number>} The resulting H values
*/
function roundSHA1(block, H)
{
var W = [], a, b, c, d, e, T, ch = ch_32, parity = parity_32,
maj = maj_32, rotl = rotl_32, safeAdd_2 = safeAdd_32_2, t,
safeAdd_5 = safeAdd_32_5;
a = H[0];
b = H[1];
c = H[2];
d = H[3];
e = H[4];
for (t = 0; t < 80; t += 1)
{
if (t < 16)
{
W[t] = block[t];
}
else
{
W[t] = rotl(W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16], 1);
}
if (t < 20)
{
T = safeAdd_5(rotl(a, 5), ch(b, c, d), e, 0x5a827999, W[t]);
}
else if (t < 40)
{
T = safeAdd_5(rotl(a, 5), parity(b, c, d), e, 0x6ed9eba1, W[t]);
}
else if (t < 60)
{
T = safeAdd_5(rotl(a, 5), maj(b, c, d), e, 0x8f1bbcdc, W[t]);
} else {
T = safeAdd_5(rotl(a, 5), parity(b, c, d), e, 0xca62c1d6, W[t]);
}
e = d;
d = c;
c = rotl(b, 30);
b = a;
a = T;
}
H[0] = safeAdd_2(a, H[0]);
H[1] = safeAdd_2(b, H[1]);
H[2] = safeAdd_2(c, H[2]);
H[3] = safeAdd_2(d, H[3]);
H[4] = safeAdd_2(e, H[4]);
return H;
}
/**
* Finalizes the SHA-1 hash
*
* @private
* @param {Array<number>} remainder Any leftover unprocessed packed ints
* that still need to be processed
* @param {number} remainderBinLen The number of bits in remainder
* @param {number} processedBinLen The number of bits already
* processed
* @param {Array<number>} H The intermediate H values from a previous
* round
* @param {number} outputLen Unused for this variant
* @return {Array<number>} The array of integers representing the SHA-1
* hash of message
*/
function finalizeSHA1(remainder, remainderBinLen, processedBinLen, H, outputLen)
{
var i, appendedMessageLength, offset, totalLen;
/* The 65 addition is a hack but it works. The correct number is
actually 72 (64 + 8) but the below math fails if
remainderBinLen + 72 % 512 = 0. Since remainderBinLen % 8 = 0,
"shorting" the addition is OK. */
offset = (((remainderBinLen + 65) >>> 9) << 4) + 15;
while (remainder.length <= offset)
{
remainder.push(0);
}
/* Append '1' at the end of the binary string */
remainder[remainderBinLen >>> 5] |= 0x80 << (24 - (remainderBinLen % 32));
/* Append length of binary string in the position such that the new
* length is a multiple of 512. Logic does not work for even multiples
* of 512 but there can never be even multiples of 512. JavaScript
* numbers are limited to 2^53 so it's "safe" to treat the totalLen as
* a 64-bit integer. */
totalLen = remainderBinLen + processedBinLen;
remainder[offset] = totalLen & 0xFFFFFFFF;
/* Bitwise operators treat the operand as a 32-bit number so need to
* use hacky division and round to get access to upper 32-ish bits */
remainder[offset - 1] = (totalLen / TWO_PWR_32) | 0;
appendedMessageLength = remainder.length;
/* This will always be at least 1 full chunk */
for (i = 0; i < appendedMessageLength; i += 16)
{
H = roundSHA1(remainder.slice(i, i + 16), H);
}
return H;
}
/* Put this here so the K arrays aren't put on the stack for every block */
var K_sha2, K_sha512, r_sha3, rc_sha3;
if ((6 & SUPPORTED_ALGS) !== 0)
{
K_sha2 = [
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2
];
if ((4 & SUPPORTED_ALGS) !== 0)
{
K_sha512 = [
new Int_64(K_sha2[ 0], 0xd728ae22), new Int_64(K_sha2[ 1], 0x23ef65cd),
new Int_64(K_sha2[ 2], 0xec4d3b2f), new Int_64(K_sha2[ 3], 0x8189dbbc),
new Int_64(K_sha2[ 4], 0xf348b538), new Int_64(K_sha2[ 5], 0xb605d019),
new Int_64(K_sha2[ 6], 0xaf194f9b), new Int_64(K_sha2[ 7], 0xda6d8118),
new Int_64(K_sha2[ 8], 0xa3030242), new Int_64(K_sha2[ 9], 0x45706fbe),
new Int_64(K_sha2[10], 0x4ee4b28c), new Int_64(K_sha2[11], 0xd5ffb4e2),
new Int_64(K_sha2[12], 0xf27b896f), new Int_64(K_sha2[13], 0x3b1696b1),
new Int_64(K_sha2[14], 0x25c71235), new Int_64(K_sha2[15], 0xcf692694),
new Int_64(K_sha2[16], 0x9ef14ad2), new Int_64(K_sha2[17], 0x384f25e3),
new Int_64(K_sha2[18], 0x8b8cd5b5), new Int_64(K_sha2[19], 0x77ac9c65),
new Int_64(K_sha2[20], 0x592b0275), new Int_64(K_sha2[21], 0x6ea6e483),
new Int_64(K_sha2[22], 0xbd41fbd4), new Int_64(K_sha2[23], 0x831153b5),
new Int_64(K_sha2[24], 0xee66dfab), new Int_64(K_sha2[25], 0x2db43210),
new Int_64(K_sha2[26], 0x98fb213f), new Int_64(K_sha2[27], 0xbeef0ee4),
new Int_64(K_sha2[28], 0x3da88fc2), new Int_64(K_sha2[29], 0x930aa725),
new Int_64(K_sha2[30], 0xe003826f), new Int_64(K_sha2[31], 0x0a0e6e70),
new Int_64(K_sha2[32], 0x46d22ffc), new Int_64(K_sha2[33], 0x5c26c926),
new Int_64(K_sha2[34], 0x5ac42aed), new Int_64(K_sha2[35], 0x9d95b3df),
new Int_64(K_sha2[36], 0x8baf63de), new Int_64(K_sha2[37], 0x3c77b2a8),
new Int_64(K_sha2[38], 0x47edaee6), new Int_64(K_sha2[39], 0x1482353b),
new Int_64(K_sha2[40], 0x4cf10364), new Int_64(K_sha2[41], 0xbc423001),
new Int_64(K_sha2[42], 0xd0f89791), new Int_64(K_sha2[43], 0x0654be30),
new Int_64(K_sha2[44], 0xd6ef5218), new Int_64(K_sha2[45], 0x5565a910),
new Int_64(K_sha2[46], 0x5771202a), new Int_64(K_sha2[47], 0x32bbd1b8),
new Int_64(K_sha2[48], 0xb8d2d0c8), new Int_64(K_sha2[49], 0x5141ab53),
new Int_64(K_sha2[50], 0xdf8eeb99), new Int_64(K_sha2[51], 0xe19b48a8),
new Int_64(K_sha2[52], 0xc5c95a63), new Int_64(K_sha2[53], 0xe3418acb),
new Int_64(K_sha2[54], 0x7763e373), new Int_64(K_sha2[55], 0xd6b2b8a3),
new Int_64(K_sha2[56], 0x5defb2fc), new Int_64(K_sha2[57], 0x43172f60),
new Int_64(K_sha2[58], 0xa1f0ab72), new Int_64(K_sha2[59], 0x1a6439ec),
new Int_64(K_sha2[60], 0x23631e28), new Int_64(K_sha2[61], 0xde82bde9),
new Int_64(K_sha2[62], 0xb2c67915), new Int_64(K_sha2[63], 0xe372532b),
new Int_64(0xca273ece, 0xea26619c), new Int_64(0xd186b8c7, 0x21c0c207),
new Int_64(0xeada7dd6, 0xcde0eb1e), new Int_64(0xf57d4f7f, 0xee6ed178),
new Int_64(0x06f067aa, 0x72176fba), new Int_64(0x0a637dc5, 0xa2c898a6),
new Int_64(0x113f9804, 0xbef90dae), new Int_64(0x1b710b35, 0x131c471b),
new Int_64(0x28db77f5, 0x23047d84), new Int_64(0x32caab7b, 0x40c72493),
new Int_64(0x3c9ebe0a, 0x15c9bebc), new Int_64(0x431d67c4, 0x9c100d4c),
new Int_64(0x4cc5d4be, 0xcb3e42b6), new Int_64(0x597f299c, 0xfc657e2a),
new Int_64(0x5fcb6fab, 0x3ad6faec), new Int_64(0x6c44198c, 0x4a475817)
];
}
}
if ((8 & SUPPORTED_ALGS) !== 0)
{
rc_sha3 = [
new Int_64(0x00000000, 0x00000001), new Int_64(0x00000000, 0x00008082),
new Int_64(0x80000000, 0x0000808A), new Int_64(0x80000000, 0x80008000),
new Int_64(0x00000000, 0x0000808B), new Int_64(0x00000000, 0x80000001),
new Int_64(0x80000000, 0x80008081), new Int_64(0x80000000, 0x00008009),
new Int_64(0x00000000, 0x0000008A), new Int_64(0x00000000, 0x00000088),
new Int_64(0x00000000, 0x80008009), new Int_64(0x00000000, 0x8000000A),
new Int_64(0x00000000, 0x8000808B), new Int_64(0x80000000, 0x0000008B),
new Int_64(0x80000000, 0x00008089), new Int_64(0x80000000, 0x00008003),
new Int_64(0x80000000, 0x00008002), new Int_64(0x80000000, 0x00000080),
new Int_64(0x00000000, 0x0000800A), new Int_64(0x80000000, 0x8000000A),
new Int_64(0x80000000, 0x80008081), new Int_64(0x80000000, 0x00008080),
new Int_64(0x00000000, 0x80000001), new Int_64(0x80000000, 0x80008008)
];
r_sha3 = [
[ 0, 36, 3, 41, 18],
[ 1, 44, 10, 45, 2],
[62, 6, 43, 15, 61],
[28, 55, 25, 21, 56],
[27, 20, 39, 8, 14]
];
}
/**
* Performs a round of SHA-2 hashing over a block
*
* @private
* @param {Array<number>} block The binary array representation of the
* block to hash
* @param {Array<number|Int_64>} H The intermediate H values from a previous
* round
* @param {string} variant The desired SHA-2 variant
* @return {Array<number|Int_64>} The resulting H values
*/
function roundSHA2(block, H, variant)
{
var a, b, c, d, e, f, g, h, T1, T2, numRounds, t, binaryStringMult,
safeAdd_2, safeAdd_4, safeAdd_5, gamma0, gamma1, sigma0, sigma1,
ch, maj, Int, W = [], int1, int2, offset, K;
/* Set up the various function handles and variable for the specific
* variant */
if ((variant === "SHA-224" || variant === "SHA-256") &&
((2 & SUPPORTED_ALGS) !== 0))
{
/* 32-bit variant */
numRounds = 64;
binaryStringMult = 1;
Int = Number;
safeAdd_2 = safeAdd_32_2;
safeAdd_4 = safeAdd_32_4;
safeAdd_5 = safeAdd_32_5;
gamma0 = gamma0_32;
gamma1 = gamma1_32;
sigma0 = sigma0_32;
sigma1 = sigma1_32;
maj = maj_32;
ch = ch_32;
K = K_sha2;
}
else if ((variant === "SHA-384" || variant === "SHA-512") &&
((4 & SUPPORTED_ALGS) !== 0))
{
/* 64-bit variant */
numRounds = 80;
binaryStringMult = 2;
Int = Int_64;
safeAdd_2 = safeAdd_64_2;
safeAdd_4 = safeAdd_64_4;
safeAdd_5 = safeAdd_64_5;
gamma0 = gamma0_64;
gamma1 = gamma1_64;
sigma0 = sigma0_64;
sigma1 = sigma1_64;
maj = maj_64;
ch = ch_64;
K = K_sha512;
}
else
{
throw new Error("Unexpected error in SHA-2 implementation");
}
a = H[0];
b = H[1];
c = H[2];
d = H[3];
e = H[4];
f = H[5];
g = H[6];
h = H[7];
for (t = 0; t < numRounds; t += 1)
{
if (t < 16)
{
offset = t * binaryStringMult;
int1 = (block.length <= offset) ? 0 : block[offset];
int2 = (block.length <= offset + 1) ? 0 : block[offset + 1];
/* Bit of a hack - for 32-bit, the second term is ignored */
W[t] = new Int(int1, int2);
}
else
{
W[t] = safeAdd_4(
gamma1(W[t - 2]), W[t - 7],
gamma0(W[t - 15]), W[t - 16]
);
}
T1 = safeAdd_5(h, sigma1(e), ch(e, f, g), K[t], W[t]);
T2 = safeAdd_2(sigma0(a), maj(a, b, c));
h = g;
g = f;
f = e;
e = safeAdd_2(d, T1);
d = c;
c = b;
b = a;
a = safeAdd_2(T1, T2);
}
H[0] = safeAdd_2(a, H[0]);
H[1] = safeAdd_2(b, H[1]);
H[2] = safeAdd_2(c, H[2]);
H[3] = safeAdd_2(d, H[3]);
H[4] = safeAdd_2(e, H[4]);
H[5] = safeAdd_2(f, H[5]);
H[6] = safeAdd_2(g, H[6]);
H[7] = safeAdd_2(h, H[7]);
return H;
}
/**
* Finalizes the SHA-2 hash
*
* @private
* @param {Array<number>} remainder Any leftover unprocessed packed ints
* that still need to be processed
* @param {number} remainderBinLen The number of bits in remainder
* @param {number} processedBinLen The number of bits already
* processed
* @param {Array<number|Int_64>} H The intermediate H values from a previous
* round
* @param {string} variant The desired SHA-2 variant
* @param {number} outputLen Unused for this variant
* @return {Array<number>} The array of integers representing the SHA-2
* hash of message
*/
function finalizeSHA2(remainder, remainderBinLen, processedBinLen, H, variant, outputLen)
{
var i, appendedMessageLength, offset, retVal, binaryStringInc, totalLen;
if ((variant === "SHA-224" || variant === "SHA-256") &&
((2 & SUPPORTED_ALGS) !== 0))
{
/* 32-bit variant */
/* The 65 addition is a hack but it works. The correct number is
actually 72 (64 + 8) but the below math fails if
remainderBinLen + 72 % 512 = 0. Since remainderBinLen % 8 = 0,
"shorting" the addition is OK. */
offset = (((remainderBinLen + 65) >>> 9) << 4) + 15;
binaryStringInc = 16;
}
else if ((variant === "SHA-384" || variant === "SHA-512") &&
((4 & SUPPORTED_ALGS) !== 0))
{
/* 64-bit variant */
/* The 129 addition is a hack but it works. The correct number is
actually 136 (128 + 8) but the below math fails if
remainderBinLen + 136 % 1024 = 0. Since remainderBinLen % 8 = 0,
"shorting" the addition is OK. */
offset = (((remainderBinLen + 129) >>> 10) << 5) + 31;
binaryStringInc = 32;
}
else
{
throw new Error("Unexpected error in SHA-2 implementation");
}
while (remainder.length <= offset)
{
remainder.push(0);
}
/* Append '1' at the end of the binary string */
remainder[remainderBinLen >>> 5] |= 0x80 << (24 - remainderBinLen % 32);
/* Append length of binary string in the position such that the new
* length is correct. JavaScript numbers are limited to 2^53 so it's
* "safe" to treat the totalLen as a 64-bit integer. */
totalLen = remainderBinLen + processedBinLen;
remainder[offset] = totalLen & 0xFFFFFFFF;
/* Bitwise operators treat the operand as a 32-bit number so need to
* use hacky division and round to get access to upper 32-ish bits */
remainder[offset - 1] = (totalLen / TWO_PWR_32) | 0;
appendedMessageLength = remainder.length;
/* This will always be at least 1 full chunk */
for (i = 0; i < appendedMessageLength; i += binaryStringInc)
{
H = roundSHA2(remainder.slice(i, i + binaryStringInc), H, variant);
}
if (("SHA-224" === variant) && ((2 & SUPPORTED_ALGS) !== 0))
{
retVal = [
H[0], H[1], H[2], H[3],
H[4], H[5], H[6]
];
}
else if (("SHA-256" === variant) && ((2 & SUPPORTED_ALGS) !== 0))
{
retVal = H;
}
else if (("SHA-384" === variant) && ((4 & SUPPORTED_ALGS) !== 0))
{
retVal = [
H[0].highOrder, H[0].lowOrder,
H[1].highOrder, H[1].lowOrder,
H[2].highOrder, H[2].lowOrder,
H[3].highOrder, H[3].lowOrder,
H[4].highOrder, H[4].lowOrder,
H[5].highOrder, H[5].lowOrder
];
}
else if (("SHA-512" === variant) && ((4 & SUPPORTED_ALGS) !== 0))
{
retVal = [
H[0].highOrder, H[0].lowOrder,
H[1].highOrder, H[1].lowOrder,
H[2].highOrder, H[2].lowOrder,
H[3].highOrder, H[3].lowOrder,
H[4].highOrder, H[4].lowOrder,
H[5].highOrder, H[5].lowOrder,
H[6].highOrder, H[6].lowOrder,
H[7].highOrder, H[7].lowOrder
];
}
else /* This should never be reached */
{
throw new Error("Unexpected error in SHA-2 implementation");
}
return retVal;
}
/**
* Performs a round of SHA-3 hashing over a block
*
* @private
* @param {Array<number>|null} block The binary array representation of the
* block to hash
* @param {Array<Array<Int_64>>} state The binary array representation of the
* block to hash
* @return {Array<Array<Int_64>>} The resulting state value
*/
function roundSHA3(block, state)
{
var round, x, y, B, C = [], D = [];
if (null !== block)
{
for (x = 0; x < block.length; x+=2)
{
state[(x >>> 1) % 5][((x >>> 1) / 5) | 0] = xor_64_2(
state[(x >>> 1) % 5][((x >>> 1) / 5) | 0],
new Int_64(block[x + 1], block[x])
);
}
}
for (round = 0; round < 24; round += 1)
{
/* getNewState doesn't care about variant beyond SHA3 so feed it a
value that triggers the getNewState "if" statement
*/
B = getNewState("SHA3-");
/* Perform theta step */
for (x = 0; x < 5; x += 1)
{
C[x] = xor_64_5(state[x][0], state[x][1], state[x][2],
state[x][3], state[x][4]);
}
for (x = 0; x < 5; x += 1)
{
D[x] = xor_64_2(C[(x + 4) % 5], rotl_64(C[(x + 1) % 5], 1));
}
for (x = 0; x < 5; x += 1)
{
for (y = 0; y < 5; y += 1)
{
state[x][y] = xor_64_2(state[x][y], D[x]);
}
}
/* Perform combined ro and pi steps */
for (x = 0; x < 5; x += 1)
{
for (y = 0; y < 5; y += 1)
{
B[y][(2 * x + 3 * y) % 5] = rotl_64(
state[x][y],
r_sha3[x][y]
);
}
}
/* Perform chi step */
for (x = 0; x < 5; x += 1)
{
for (y = 0; y < 5; y += 1)
{
state[x][y] = xor_64_2(
B[x][y],
new Int_64(
~(B[(x + 1) % 5][y].highOrder) & B[(x + 2) % 5][y].highOrder,
~(B[(x + 1) % 5][y].lowOrder) & B[(x + 2) % 5][y].lowOrder
)
);
}
}
/* Perform iota step */
state[0][0] = xor_64_2(state[0][0], rc_sha3[round]);
}
return state;
}
/**
* Finalizes the SHA-3 hash
*
* @private
* @param {Array<number>} remainder Any leftover unprocessed packed ints
* that still need to be processed
* @param {number} remainderBinLen The number of bits in remainder
* @param {number} processedBinLen The number of bits already
* processed
* @param {Array<Array<Int_64>>} state The state from a previous round
* @param {number} blockSize The block size/rate of the variant in bits
* @param {number} delimiter The delimiter value for the variant
* @param {number} outputLen The output length for the variant in bits
* @return {Array<number>} The array of integers representing the SHA-3
* hash of message
*/
function finalizeSHA3(remainder, remainderBinLen, processedBinLen, state, blockSize, delimiter, outputLen)
{
var i, retVal = [], binaryStringInc = blockSize >>> 5, state_offset = 0,
remainderIntLen = remainderBinLen >>> 5, temp;
/* Process as many blocks as possible, some may be here for multiple rounds
with SHAKE
*/
for (i = 0; i < remainderIntLen && remainderBinLen >= blockSize; i += binaryStringInc)
{
state = roundSHA3(remainder.slice(i, i + binaryStringInc), state);
remainderBinLen -= blockSize;
}
remainder = remainder.slice(i);
remainderBinLen = remainderBinLen % blockSize;
/* Pad out the remainder to a full block */
while (remainder.length < binaryStringInc)
{
remainder.push(0);
}
/* Find the next "empty" byte for the 0x80 and append it via an xor */
i = remainderBinLen >>> 3;
remainder[i >> 2] ^= delimiter << (8 * (i % 4));
remainder[binaryStringInc - 1] ^= 0x80000000;
state = roundSHA3(remainder, state);
while (retVal.length * 32 < outputLen)
{
temp = state[state_offset % 5][(state_offset / 5) | 0];
retVal.push(temp.lowOrder);
if (retVal.length * 32 >= outputLen)
{
break;
}
retVal.push(temp.highOrder);
state_offset += 1;
if (0 === ((state_offset * 64) % blockSize))
{
roundSHA3(null, state);
}
}
return retVal;
}
/**
* jsSHA is the workhorse of the library. Instantiate it with the string to
* be hashed as the parameter
*
* @constructor
* @this {jsSHA}
* @param {string} variant The desired SHA variant (SHA-1, SHA-224, SHA-256,
* SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-384, or SHA3-512)
* @param {string} inputFormat The format of srcString: HEX, TEXT, B64,
* BYTES, or ARRAYBUFFER
* @param {{encoding: (string|undefined), numRounds: (number|undefined)}=}
* options Optional values
*/
var jsSHA = function(variant, inputFormat, options)
{
var processedLen = 0, remainder = [], remainderLen = 0, utfType,
intermediateState, converterFunc, shaVariant = variant, outputBinLen,
variantBlockSize, roundFunc, finalizeFunc, stateCloneFunc,
hmacKeySet = false, keyWithIPad = [], keyWithOPad = [], numRounds,
updatedCalled = false, inputOptions, isSHAKE = false, bigEndianMod = -1;
inputOptions = options || {};
utfType = inputOptions["encoding"] || "UTF8";
numRounds = inputOptions["numRounds"] || 1;
if ((numRounds !== parseInt(numRounds, 10)) || (1 > numRounds))
{
throw new Error("numRounds must a integer >= 1");
}
if (("SHA-1" === shaVariant) && ((1 & SUPPORTED_ALGS) !== 0))
{
variantBlockSize = 512;
roundFunc = roundSHA1;
finalizeFunc = finalizeSHA1;
outputBinLen = 160;
stateCloneFunc = function(state) { return state.slice();};
}
else if ((shaVariant.lastIndexOf("SHA-", 0) === 0) && ((6 & SUPPORTED_ALGS) !== 0))
{
roundFunc = function (block, H) {
return roundSHA2(block, H, shaVariant);
};
finalizeFunc = function (remainder, remainderBinLen, processedBinLen, H, outputLen)
{
return finalizeSHA2(remainder, remainderBinLen, processedBinLen, H, shaVariant, outputLen);
};
stateCloneFunc = function(state) { return state.slice(); };
if (("SHA-224" === shaVariant) && ((2 & SUPPORTED_ALGS) !== 0))
{
variantBlockSize = 512;
outputBinLen = 224;
}
else if (("SHA-256" === shaVariant) && ((2 & SUPPORTED_ALGS) !== 0))
{
variantBlockSize = 512;
outputBinLen = 256;
}
else if (("SHA-384" === shaVariant) && ((4 & SUPPORTED_ALGS) !== 0))
{
variantBlockSize = 1024;
outputBinLen = 384;
}
else if (("SHA-512" === shaVariant) && ((4 & SUPPORTED_ALGS) !== 0))
{
variantBlockSize = 1024;
outputBinLen = 512;
}
else
{
throw new Error("Chosen SHA variant is not supported "+shaVariant);
}
}
else if (((shaVariant.lastIndexOf("SHA3-", 0) === 0) || (shaVariant.lastIndexOf("SHAKE", 0) === 0)) &&
((8 & SUPPORTED_ALGS) !== 0))
{
var delimiter = 0x06;
roundFunc = roundSHA3;
stateCloneFunc = function(state) { return cloneSHA3State(state);};
bigEndianMod = 1;
if ("SHA3-224" === shaVariant)
{
variantBlockSize = 1152;
outputBinLen = 224;
}
else if ("SHA3-256" === shaVariant)
{
variantBlockSize = 1088;
outputBinLen = 256;
}
else if ("SHA3-384" === shaVariant)
{
variantBlockSize = 832;
outputBinLen = 384;
}
else if ("SHA3-512" === shaVariant)
{
variantBlockSize = 576;
outputBinLen = 512;
}
else if ("SHAKE128" === shaVariant)
{
variantBlockSize = 1344;
outputBinLen = -1;
delimiter = 0x1F;
isSHAKE = true;
}
else if ("SHAKE256" === shaVariant)
{
variantBlockSize = 1088;
outputBinLen = -1;
delimiter = 0x1F;
isSHAKE = true;
}
else
{
throw new Error("Chosen SHA variant is not supported "+shaVariant);
}
finalizeFunc = function (remainder, remainderBinLen, processedBinLen, state, outputLen)
{
return finalizeSHA3(remainder, remainderBinLen, processedBinLen, state, variantBlockSize, delimiter, outputLen);
};
}
else
{
throw new Error("Chosen SHA varwwwiant is not supported "+shaVariant);
}
converterFunc = getStrConverter(inputFormat, utfType, bigEndianMod);
intermediateState = getNewState(shaVariant);
/**
* Sets the HMAC key for an eventual getHMAC call. Must be called
* immediately after jsSHA object instantiation
*
* @expose
* @param {string|ArrayBuffer} key The key used to calculate the HMAC
* @param {string} inputFormat The format of key, HEX, TEXT, B64, BYTES,
* or ARRAYBUFFER
* @param {{encoding : (string|undefined)}=} options Associative array
* of input format options
*/
this.setHMACKey = function(key, inputFormat, options)
{
var keyConverterFunc, convertRet, keyBinLen, keyToUse, blockByteSize,
i, lastArrayIndex, keyOptions;
if (true === hmacKeySet)
{
throw new Error("HMAC key already set");
}
if (true === updatedCalled)
{
throw new Error("Cannot set HMAC key after calling update");
}
if ((isSHAKE === true) && ((8 & SUPPORTED_ALGS) !== 0))
{
throw new Error("SHAKE is not supported for HMAC");
}
keyOptions = options || {};
utfType = keyOptions["encoding"] || "UTF8";
keyConverterFunc = getStrConverter(inputFormat, utfType, bigEndianMod);
convertRet = keyConverterFunc(key);
keyBinLen = convertRet["binLen"];
keyToUse = convertRet["value"];
blockByteSize = variantBlockSize >>> 3;
/* These are used multiple times, calculate and store them */
lastArrayIndex = (blockByteSize / 4) - 1;
/* Figure out what to do with the key based on its size relative to
* the hash's block size */
if (blockByteSize < (keyBinLen / 8))
{
keyToUse = finalizeFunc(keyToUse, keyBinLen, 0,getNewState(shaVariant), outputBinLen);
/* For all variants, the block size is bigger than the output
* size so there will never be a useful byte at the end of the
* string */
while (keyToUse.length <= lastArrayIndex)
{
keyToUse.push(0);
}
keyToUse[lastArrayIndex] &= 0xFFFFFF00;
}
else if (blockByteSize > (keyBinLen / 8))
{
/* If the blockByteSize is greater than the key length, there
* will always be at LEAST one "useless" byte at the end of the
* string */
while (keyToUse.length <= lastArrayIndex)
{
keyToUse.push(0);
}
keyToUse[lastArrayIndex] &= 0xFFFFFF00;
}
/* Create ipad and opad */
for (i = 0; i <= lastArrayIndex; i += 1)
{
keyWithIPad[i] = keyToUse[i] ^ 0x36363636;
keyWithOPad[i] = keyToUse[i] ^ 0x5C5C5C5C;
}
intermediateState = roundFunc(keyWithIPad, intermediateState);
processedLen = variantBlockSize;
hmacKeySet = true;
};
/**
* Takes strString and hashes as many blocks as possible. Stores the
* rest for either a future update or getHash call.
*
* @expose
* @param {string|ArrayBuffer} srcString The string to be hashed
*/
this.update = function(srcString)
{
var convertRet, chunkBinLen, chunkIntLen, chunk, i, updateProcessedLen = 0,
variantBlockIntInc = variantBlockSize >>> 5;
convertRet = converterFunc(srcString, remainder, remainderLen);
chunkBinLen = convertRet["binLen"];
chunk = convertRet["value"];
chunkIntLen = chunkBinLen >>> 5;
for (i = 0; i < chunkIntLen; i += variantBlockIntInc)
{
if (updateProcessedLen + variantBlockSize <= chunkBinLen)
{
intermediateState = roundFunc(
chunk.slice(i, i + variantBlockIntInc),
intermediateState
);
updateProcessedLen += variantBlockSize;
}
}
processedLen += updateProcessedLen;
remainder = chunk.slice(updateProcessedLen >>> 5);
remainderLen = chunkBinLen % variantBlockSize;
updatedCalled = true;
};
/**
* Returns the desired SHA hash of the string specified at instantiation
* using the specified parameters
*
* @expose
* @param {string} format The desired output formatting (B64, HEX,
* BYTES, or ARRAYBUFFER)
* @param {{outputUpper : (boolean|undefined), b64Pad : (string|undefined),
* shakeLen : (number|undefined)}=} options Hash list of output formatting options
* @return {string|ArrayBuffer} The string representation of the hash
* in the format specified.
*/
this.getHash = function(format, options)
{
var formatFunc, i, outputOptions, finalizedState;
if (true === hmacKeySet)
{
throw new Error("Cannot call getHash after setting HMAC key");
}
outputOptions = getOutputOpts(options);
if ((isSHAKE === true) && ((8 & SUPPORTED_ALGS) !== 0))
{
if (outputOptions["shakeLen"] === -1)
{
throw new Error("shakeLen must be specified in options");
}
outputBinLen = outputOptions["shakeLen"];
}
/* Validate the output format selection */
switch (format)
{
case "HEX":
formatFunc = function(binarray) {return packed2hex(binarray, outputBinLen, bigEndianMod, outputOptions);};
break;
case "B64":
formatFunc = function(binarray) {return packed2b64(binarray, outputBinLen, bigEndianMod, outputOptions);};
break;
case "BYTES":
formatFunc = function(binarray) {return packed2bytes(binarray, outputBinLen, bigEndianMod);};
break;
case "ARRAYBUFFER":
try {
i = new ArrayBuffer(0);
} catch (ignore) {
throw new Error("ARRAYBUFFER not supported by this environment");
}
formatFunc = function(binarray) {return packed2arraybuffer(binarray, outputBinLen, bigEndianMod);};
break;
default:
throw new Error("format must be HEX, B64, BYTES, or ARRAYBUFFER");
}
finalizedState = finalizeFunc(remainder.slice(), remainderLen, processedLen, stateCloneFunc(intermediateState), outputBinLen);
for (i = 1; i < numRounds; i += 1)
{
/* This weird fix-up is only for the case of SHAKE algorithms
* and outputBinLen is not a multiple of 32. In this case, the
* very last block of finalizedState has data that needs to be
* ignored because all the finalizeFunc calls need to have
* unneeded bits set to 0.
*/
if (((8 & SUPPORTED_ALGS) !== 0) && (isSHAKE === true) && (outputBinLen % 32 !== 0))
{
finalizedState[finalizedState.length - 1] &= 0x00FFFFFF >>> 24 - (outputBinLen % 32);
}
finalizedState = finalizeFunc(finalizedState, outputBinLen, 0, getNewState(shaVariant), outputBinLen);
}
return formatFunc(finalizedState);
};
/**
* Returns the the HMAC in the specified format using the key given by
* a previous setHMACKey call.
*
* @expose
* @param {string} format The desired output formatting
* (B64, HEX, BYTES, or ARRAYBUFFER)
* @param {{outputUpper : (boolean|undefined), b64Pad : (string|undefined),
* shakeLen : (number|undefined)}=} options associative array of output
* formatting options
* @return {string|ArrayBuffer} The string representation of the hash in the
* format specified.
*/
this.getHMAC = function(format, options)
{
var formatFunc, firstHash, outputOptions, finalizedState;
if (false === hmacKeySet)
{
throw new Error("Cannot call getHMAC without first setting HMAC key");
}
outputOptions = getOutputOpts(options);
/* Validate the output format selection */
switch (format)
{
case "HEX":
formatFunc = function(binarray) {return packed2hex(binarray, outputBinLen, bigEndianMod, outputOptions);};
break;
case "B64":
formatFunc = function(binarray) {return packed2b64(binarray, outputBinLen, bigEndianMod, outputOptions);};
break;
case "BYTES":
formatFunc = function(binarray) {return packed2bytes(binarray, outputBinLen, bigEndianMod);};
break;
case "ARRAYBUFFER":
try {
formatFunc = new ArrayBuffer(0);
} catch(ignore) {
throw new Error("ARRAYBUFFER not supported by this environment");
}
formatFunc = function(binarray) {return packed2arraybuffer(binarray, outputBinLen, bigEndianMod);};
break;
default:
throw new Error("outputFormat must be HEX, B64, BYTES, or ARRAYBUFFER");
}
firstHash = finalizeFunc(remainder.slice(), remainderLen, processedLen, stateCloneFunc(intermediateState), outputBinLen);
finalizedState = roundFunc(keyWithOPad, getNewState(shaVariant));
finalizedState = finalizeFunc(firstHash, outputBinLen, variantBlockSize, finalizedState, outputBinLen);
return formatFunc(finalizedState);
};
};
if (("function" === typeof define) && (define["amd"])) /* AMD Support */
{
define(function()
{
return jsSHA;
});
} else if ("undefined" !== typeof exports) /* Node Support */
{
if (("undefined" !== typeof module) && module["exports"])
{
module["exports"] = jsSHA;
exports = jsSHA;
}
else {
exports = jsSHA;
}
} else { /* Browsers and Web Workers*/
global["jsSHA"] = jsSHA;
}
}(X));
TOTP = function() {
var dec2hex = function(s) {
return (s < 15.5 ? "0" : "") + Math.round(s).toString(16);
};
var hex2dec = function(s) {
return parseInt(s, 16);
};
var leftpad = function(s, l, p) {
if(l + 1 >= s.length) {
s = Array(l + 1 - s.length).join(p) + s;
}
return s;
};
var base32tohex = function(base32) {
var base32chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567";
var bits = "";
var hex = "";
for(var i = 0; i < base32.length; i++) {
var val = base32chars.indexOf(base32.charAt(i).toUpperCase());
bits += leftpad(val.toString(2), 5, '0');
}
for(var i = 0; i + 4 <= bits.length; i+=4) {
var chunk = bits.substr(i, 4);
hex = hex + parseInt(chunk, 2).toString(16) ;
}
return hex;
};
this.getOTP = function(secret) {
try {
var key = base32tohex(secret);
var epoch = Math.round(new Date().getTime() / 1000.0);
var time = leftpad(dec2hex(Math.floor(epoch / 30)), 16, "0");
var shaObj = new X.jsSHA("SHA-1", "HEX");
shaObj.setHMACKey(key, "HEX");
shaObj.update(time);
var hmac = shaObj.getHMAC("HEX");
var offset = hex2dec(hmac.substring(hmac.length - 1));
var otp = (hex2dec(hmac.substr(offset * 2, 8)) & hex2dec("7fffffff")) + "";
otp = (otp).substr(otp.length - 6, 6);
} catch (error) {
throw error;
}
return otp;
};
}
var totpObj = new TOTP();
var otp = totpObj.getOTP("YOUR_SECRET_HERE");
pm.environment.set("OTP", otp);
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment