Skip to content

Instantly share code, notes, and snippets.

@napjon
Last active September 12, 2017 21:49
Show Gist options
  • Save napjon/ef842b41e0048d132607 to your computer and use it in GitHub Desktop.
Save napjon/ef842b41e0048d132607 to your computer and use it in GitHub Desktop.
Method to convert docs using sklearn to pyLDAVis
def from_sklearn(docs,vect,lda,**kwargs):
"""Create Prepared Data from sklearn's vectorizer and Latent Dirichlet
Application
Parameters
----------
docs : Pandas Series.
Documents to be passed as an input.
vect : Scikit-Learn Vectorizer (CountVectorizer,TfIdfVectorizer).
vectorizer to convert documents into matrix sparser
lda : sklearn.decomposition.LatentDirichletAllocation.
Latent Dirichlet Allocation
**kwargs: Keyword argument to be passed to pyLDAvis.prepare()
Returns
-------
prepared_data : PreparedData
vect : sklearn's Vectorizer.
lda : sklearn's Latent Dirichlet Allocation.
"""
norm = lambda data: pd.DataFrame(data).div(data.sum(1),axis=0).values
vected = vect.fit_transform(docs)
doc_topic_dists = norm(lda.fit_transform(vected))
prepared = prepare(
doc_lengths = docs.str.len(),
vocab = vect.get_feature_names(),
term_frequency = vected.sum(axis=0).tolist()[0],
topic_term_dists = norm(lda.components_),
doc_topic_dists = doc_topic_dists,
**kwargs)
return prepared,lda,vect
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation
from pyLDAVis import prepare
vect = CountVectorizer()
lda = LatentDirichletAllocation()
prepared = from_sklearn(docs,vect,lda)
#Using LDA module from https://github.com/ariddell/lda
import lda
lda = lda.LDA()
prepared = from_sklearn(docs,vect,lda)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment