Created
January 22, 2016 16:52
-
-
Save nasimrahaman/58b65d84085516fbf705 to your computer and use it in GitHub Desktop.
Basic Linear Regression with Theano
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# (CC-NC-SA) Nasim Rahaman | |
import theano as th | |
import theano.tensor as T | |
import numpy as np | |
import time | |
# Weights | |
W = th.shared(value=np.random.uniform(size=(3, 3))) | |
# Input | |
x = T.matrix() | |
# Output | |
y = T.dot(x, W) | |
# Target | |
yt = T.matrix() | |
# MSE Loss | |
L = T.mean(T.sum((y - yt) ** 2, axis=1)) | |
# Compute Symbolic Gradient | |
dLdW = T.grad(cost=L, wrt=W) | |
# Gradient Descent Updates (Learning Rate = 1 works fine) | |
upd = [(W, W - dLdW)] | |
# Compile Training Function | |
train = th.function(inputs=[x, yt], outputs=L, updates=upd, allow_input_downcast=True) | |
# Generate Synthetic Data (numerical) | |
numW = np.random.uniform(size=(3, 3)) | |
numx = np.random.uniform(size=(100, 3)) | |
numyt = np.dot(numx, numW) | |
print("Initial W: \n {}".format(W.get_value())) | |
print("Target W: \n {}".format(numW)) | |
programstart = time.time() | |
# Batch gradient descent for 500 epochs | |
for _ in xrange(500): | |
train(numx, numyt) | |
programstop = time.time() | |
print("Fitted W: \n {}".format(W.get_value())) | |
print("Elapsed Time: {} seconds on a GPU (GT 750M)".format(programstop - programstart)) | |
# Using gpu device 0: GeForce GT 750M | |
# Initial W: | |
# [[ 0.36780546 0.70396992 0.36098496] | |
# [ 0.04568252 0.60477838 0.47389695] | |
# [ 0.69876337 0.92058904 0.57620348]] | |
# Target W: | |
# [[ 0.28928668 0.67040456 0.20592429] | |
# [ 0.98262113 0.37950274 0.50209176] | |
# [ 0.27904913 0.88948569 0.38525592]] | |
# Fitted W: | |
# [[ 0.28928668 0.67040456 0.20592429] | |
# [ 0.98262113 0.37950274 0.50209176] | |
# [ 0.27904913 0.88948569 0.38525592]] | |
# Elapsed Time: 0.154557228088 seconds on a GPU (GT 750M) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment