$ cd /path/to/Dockerfile
$ sudo docker build .
View running processes
{0: 'tench, Tinca tinca', | |
1: 'goldfish, Carassius auratus', | |
2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias', | |
3: 'tiger shark, Galeocerdo cuvieri', | |
4: 'hammerhead, hammerhead shark', | |
5: 'electric ray, crampfish, numbfish, torpedo', | |
6: 'stingray', | |
7: 'cock', | |
8: 'hen', | |
9: 'ostrich, Struthio camelus', |
import re | |
def trailing_digits(str): | |
m = re.search('^[0-9]*', str) | |
return (str[m.start():m.end()], str[m.end():]) | |
#> trailing_digits('1234 hollywood boulevard') | |
#> ('1234', ' hollywood boulevard') |
// $SPARK_HOME/bin/spark-shell --master spark://localhost:7077 --packages com.datastax.spark:spark-cassandra-connector_2.10:1.5.0-M2 --conf spark.cassandra.connection.host=localhost | |
// let's do some data data science, | |
// Idea: | |
// | |
// venues exhibit a typical visit pattern during the week. | |
// Some venues are more checked in during the weekends, other during midweek. | |
// Let's apply machine learning to cluster venues which exhibit | |
// the same visiting behavior during the week. |
// creation flow | |
POST /api/actors | |
{ | |
"data" : { | |
"type": "actors", | |
"attributes": { | |
"type": "threashold", | |
"params": { |
from httpMethods import * | |
# Create the graph (profiling tags) | |
# get (as a http client) every 10 seconds json and emit it on | |
post('/api/actors', | |
{ | |
"type":"httpclient", | |
"trigger": null, # can also be omitted altogether | |
"collect":null, # can also be omitted altogether |
$> cat data.txt | grep "streming is awesome" > results.txt |