Last active
May 19, 2023 05:08
-
-
Save naturale0/3915e2def589553e91dce99e69d138cc to your computer and use it in GitHub Desktop.
python class for converting p-values to adjusted p-values (or q-values) for multiple comparison correction.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import statsmodels as sms | |
class MCPConverter(object): | |
""" | |
input: array of p-values. | |
* convert p-value into adjusted p-value (or q-value) | |
""" | |
def __init__(self, pvals, zscores=None): | |
self.pvals = pvals | |
self.zscores = zscores | |
self.len = len(pvals) | |
if zscores is not None: | |
srted = np.array(sorted(zip(pvals.copy(), zscores.copy()))) | |
self.sorted_pvals = srted[:, 0] | |
self.sorted_zscores = srted[:, 1] | |
else: | |
self.sorted_pvals = np.array(sorted(pvals.copy())) | |
self.order = sorted(range(len(pvals)), key=lambda x: pvals[x]) | |
def adjust(self, method="holm"): | |
""" | |
methods = ["bonferroni", "holm", "bh", "lfdr"] | |
(local FDR method needs 'statsmodels' package) | |
""" | |
if method is "bonferroni": | |
return [np.min([1, i]) for i in self.sorted_pvals * self.len] | |
elif method is "holm": | |
return [np.min([1, i]) for i in (self.sorted_pvals * (self.len - np.arange(1, self.len+1) + 1))] | |
elif method is "bh": | |
p_times_m_i = self.sorted_pvals * self.len / np.arange(1, self.len+1) | |
return [np.min([p, p_times_m_i[i+1]]) if i < self.len-1 else p for i, p in enumerate(p_times_m_i)] | |
elif method is "lfdr": | |
if self.zscores is None: | |
raise ValueError("Z-scores were not provided.") | |
return sms.stats.multitest.local_fdr(abs(self.sorted_zscores)) | |
else: | |
raise ValueError("invalid method entered: '{}'".format(method)) | |
def adjust_many(self, methods=["bonferroni", "holm", "bh", "lfdr"]): | |
if self.zscores is not None: | |
df = pd.DataFrame(np.c_[self.sorted_pvals, self.sorted_zscores], columns=["p_values", "z_scores"]) | |
for method in methods: | |
df[method] = self.adjust(method) | |
else: | |
df = pd.DataFrame(self.sorted_pvals, columns=["p_values"]) | |
for method in methods: | |
if method is not "lfdr": | |
df[method] = self.adjust(method) | |
return df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment