Last active
December 28, 2018 08:02
-
-
Save nbenn/5c7961ee25967cfc7e93fd80275fcb46 to your computer and use it in GitHub Desktop.
Experiments with parallel group-by in data.table
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
dt_sequential <- function(tbl, group_by, fun, use_cols) { | |
time_taken <- system.time({ | |
res <- tbl[, fun(.SD), by = group_by, .SDcols = use_cols] | |
}) | |
list(result = res, timings = time_taken) | |
} | |
dt_parallel <- function(tbl, group_by, fun, use_cols, n_cores, | |
n_chuncks = n_cores) { | |
func <- function(i, dt) { | |
dt[GroupIndex == i, fun(.SD), by = group_by, .SDcols = use_cols] | |
} | |
tbl <- tbl[, GroupIndex := .GRP, by = group_by] | |
grp_map <- rep( | |
seq_len(n_chuncks), | |
lengths(parallel::splitIndices(max(tbl[["GroupIndex"]]), n_chuncks)) | |
) | |
tbl <- tbl[, GroupIndex := grp_map[GroupIndex]] | |
if (n_cores == 1L) { | |
time_taken <- system.time({ | |
res <- lapply(seq_len(n_chuncks), func, tbl) | |
}) | |
} else { | |
time_taken <- system.time({ | |
res <- parallel::mclapply(seq_len(n_chuncks), func, tbl, | |
mc.cores = n_cores) | |
}) | |
} | |
list(result = data.table::rbindlist(res), timings = time_taken) | |
} | |
rep_run <- function(n_reps, fun, ...) { | |
res <- lapply(seq_len(n_reps), function(i, ...) { | |
time_taken <- system.time({ | |
res <- fun(...) | |
}) | |
list(result = res, overall = time_taken) | |
}, ...) | |
overall <- do.call(rbind, lapply(res, `[[`, "overall")) | |
res <- lapply(res, `[[`, "result") | |
timings <- do.call(rbind, lapply(res, `[[`, "timings")) | |
timings <- cbind(timings[, 1:3], overall[, 1:3]) | |
timings <- cbind(mean = apply(timings, 2L, mean), | |
var = apply(timings, 2L, var)) | |
rownames(timings) <- paste0(rep(c("user (", "system (", "elapsed ("), 2), | |
rep(c("focus)", "total)"), each = 3)) | |
print(timings) | |
res[[1L]][["result"]] | |
} | |
new_dt <- function(n = 3e6) { | |
data.table::data.table( | |
a = rep(LETTERS, each = n), | |
b = rep(letters, times = n), | |
c = runif(length(letters) * n, 0, 1), | |
d = runif(length(letters) * n, 1, 2), | |
e = runif(length(letters) * n, 1, 3), | |
f = rnorm(length(letters) * n, 0, 1), | |
g = rnorm(length(letters) * n, 1, 2), | |
h = rnorm(length(letters) * n, 2, 1) | |
) | |
} | |
col_var <- function(x) lapply(x, function(y) { | |
# slow this down a bit | |
res <- 0 | |
y_bar <- 0 | |
for (i in y) y_bar <- y_bar + i | |
y_bar <- y_bar / length(y) | |
for (i in y) res <- res + (i - y_bar) ^ 2 | |
res / length(y) | |
}) | |
plus_one <- function(x) lapply(x, function(y) y + 1) | |
grp_cols <- letters[1:2] | |
do_cols <- letters[3:8] | |
n_reps <- 20L | |
tbl <- new_dt() | |
memuse::mu(tbl) | |
res_1 <- rep_run(n_reps, dt_sequential, tbl, grp_cols, col_var, do_cols) | |
res_2 <- rep_run(n_reps, dt_parallel, tbl, grp_cols, col_var, do_cols, 1L, 2L) | |
res_3 <- rep_run(n_reps, dt_parallel, tbl, grp_cols, col_var, do_cols, 2L, 2L) | |
res_4 <- dt_parallel(tbl, grp_cols, plus_one, do_cols, 2L, 2L) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment