Created
October 30, 2018 07:43
-
-
Save nbenn/cc439d6f11e27e65e92f5e7b18ff8f32 to your computer and use it in GitHub Desktop.
Experiments with parallel access to bigmemory objects
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(bigmemory) | |
add_col_var <- function(x) { | |
biganalytics::apply(x, 2L, function(y) { | |
col_var <- 0 | |
y_bar <- 0 | |
for (i in y) y_bar <- y_bar + i | |
y_bar <- y_bar / length(y) | |
for (i in y) col_var <- col_var + (i - y_bar) ^ 2 | |
y + (col_var / length(y)) | |
}) | |
} | |
bm_parallel <- function(mat, fun, n_cores, n_chuncks = n_cores) { | |
func <- function(i, m) { | |
m[i, ] <- fun(m[i, ]) | |
} | |
grp_ind <- parallel::splitIndices(nrow(mat), n_chuncks) | |
if (n_cores == 1L) { | |
time_taken <- system.time( | |
lapply(grp_ind, func, mat) | |
) | |
} else { | |
time_taken <- system.time( | |
parallel::mclapply(grp_ind, func, mat, mc.cores = n_cores) | |
) | |
} | |
list(result = mat, timings = time_taken) | |
} | |
rep_run <- function(n_reps, fun, ...) { | |
res <- lapply(seq_len(n_reps), function(i, ...) { | |
time_taken <- system.time({ | |
res <- fun(...) | |
}) | |
list(result = res, overall = time_taken) | |
}, ...) | |
overall <- do.call(rbind, lapply(res, `[[`, "overall")) | |
res <- lapply(res, `[[`, "result") | |
timings <- do.call(rbind, lapply(res, `[[`, "timings")) | |
timings <- cbind(timings[, 1:3], overall[, 1:3]) | |
timings <- cbind(mean = apply(timings, 2L, mean), | |
var = apply(timings, 2L, var)) | |
rownames(timings) <- paste0(rep(c("user (", "system (", "elapsed ("), 2), | |
rep(c("focus)", "total)"), each = 3)) | |
print(timings) | |
res[[1L]][["result"]] | |
} | |
new_bm <- function(n = 3e6) { | |
bigmemory::as.big.matrix( | |
x = matrix( | |
c( | |
runif(length(letters) * n, 0, 1), | |
runif(length(letters) * n, 1, 2), | |
runif(length(letters) * n, 1, 3), | |
rnorm(length(letters) * n, 0, 1), | |
rnorm(length(letters) * n, 1, 2), | |
rnorm(length(letters) * n, 2, 1) | |
), | |
ncol = 6 | |
), | |
shared = TRUE | |
) | |
} | |
bm <- new_bm() | |
n_reps <- 10L | |
bm <- rep_run(n_reps, bm_parallel, bm, add_col_var, 1L, 2L) | |
> mean var | |
> user (focus) 59.7323 0.33399268 | |
> system (focus) 13.2913 0.09428823 | |
> elapsed (focus) 73.0359 0.54904966 | |
> user (total) 64.0044 0.26820693 | |
> system (total) 15.1614 0.09650071 | |
> elapsed (total) 79.1799 0.47342632 | |
bm <- rep_run(n_reps, bm_parallel, bm, add_col_var, 2L, 2L) | |
> mean var | |
> user (focus) 0.6499 0.001790322 | |
> system (focus) 4.2755 0.007360722 | |
> elapsed (focus) 46.0400 0.027573111 | |
> user (total) 4.9179 0.008596767 | |
> system (total) 6.2301 0.008852322 | |
> elapsed (total) 52.2634 0.038122933 | |
bm <- rep_run(n_reps, bm_parallel, bm, add_col_var, 1L, 3L) | |
> mean var | |
> user (focus) 60.0507 0.01421312 | |
> system (focus) 13.5197 0.01155446 | |
> elapsed (focus) 73.5787 0.02537290 | |
> user (total) 65.3022 0.01397618 | |
> system (total) 15.4178 0.01004596 | |
> elapsed (total) 80.7294 0.02088427 | |
bm <- rep_run(n_reps, bm_parallel, bm, add_col_var, 3L, 3L) | |
> mean var | |
> user (focus) 0.6682 0.002946622 | |
> system (focus) 4.2276 0.013424267 | |
> elapsed (focus) 32.5987 0.030501567 | |
> user (total) 5.9507 0.003138900 | |
> system (total) 6.1398 0.010955956 | |
> elapsed (total) 39.7945 0.039957389 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment