Last active
July 6, 2018 09:54
-
-
Save nbortolotti/99e1ad329383de04be4834a8c3e28c0d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import os | |
import cv2 | |
import numpy as np | |
import tensorflow as tf | |
sys.path.append("..") | |
from object_detection.utils import label_map_util | |
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017' | |
MODEL_FILE = MODEL_NAME + '.tar.gz' | |
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' | |
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' | |
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') | |
NUM_CLASSES = 90 | |
label_map = label_map_util.load_labelmap(PATH_TO_LABELS) | |
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, | |
use_display_name=True) | |
category_index = label_map_util.create_category_index(categories) | |
def detect_alert(boxes, classes, scores, category_index, max_boxes_to_draw=20, | |
min_score_thresh=.5, | |
): | |
r = [] | |
for i in range(min(max_boxes_to_draw, boxes.shape[0])): | |
if scores is None or scores[i] > min_score_thresh: | |
test1 = None | |
test2 = None | |
if category_index[classes[i]]['name']: | |
test1 = category_index[classes[i]]['name'] | |
test2 = int(100 * scores[i]) | |
line = {} | |
line[test1] = test2 | |
r.append(line) | |
return r | |
def detect_objects(image_np, sess, detection_graph): | |
image_np_expanded = np.expand_dims(image_np, axis=0) | |
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') | |
boxes = detection_graph.get_tensor_by_name('detection_boxes:0') | |
scores = detection_graph.get_tensor_by_name('detection_scores:0') | |
classes = detection_graph.get_tensor_by_name('detection_classes:0') | |
num_detections = detection_graph.get_tensor_by_name('num_detections:0') | |
# Actual detection. | |
(boxes, scores, classes, num_detections) = sess.run( | |
[boxes, scores, classes, num_detections], | |
feed_dict={image_tensor: image_np_expanded}) | |
alert_array = detect_alert(np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), | |
category_index) | |
return alert_array | |
IMAGE_SIZE = (12, 8) | |
def load_image_into_numpy_array(image): | |
(im_width, im_height) = image.size | |
return np.array(image.getdata()).reshape( | |
(im_height, im_width, 3)).astype(np.uint8) | |
detection_graph = tf.Graph() | |
with detection_graph.as_default(): | |
od_graph_def = tf.GraphDef() | |
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: | |
serialized_graph = fid.read() | |
od_graph_def.ParseFromString(serialized_graph) | |
tf.import_graph_def(od_graph_def, name='') | |
def process_image(image): | |
with detection_graph.as_default(): | |
with tf.Session(graph=detection_graph) as sess: | |
alert_array = detect_objects(image, sess, detection_graph) | |
alert = False | |
for q in alert_array: | |
print (q) | |
if 'donut' in q: | |
if q['donut'] > 87: #manual rule example | |
alert = True | |
return alert | |
video = cv2.VideoCapture('demo_8_1.mp4') #change the path of the video | |
success, image = video.read() | |
count = 0 | |
success = True | |
while success: | |
success, image = video.read() | |
print 'Read a new frame: ', success | |
if success: | |
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
alert = process_image(img) | |
if alert: | |
break | |
count += 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment