Created
December 9, 2019 21:18
-
-
Save nbortolotti/e0d2d014a12edf50af3272318f9b7130 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import tensorflow as tf | |
train_ds_url = "http://download.tensorflow.org/data/iris_training.csv" | |
test_ds_url = "http://download.tensorflow.org/data/iris_test.csv" | |
ds_columns = ['SepalLength', 'SepalWidth','PetalLength', 'PetalWidth', 'Plants'] | |
species = np.array(['Setosa', 'Versicolor', 'Virginica'], dtype=np.object) | |
#Load data | |
categories = 'Plants' | |
train_path = tf.keras.utils.get_file(train_ds_url.split('/')[-1], train_ds_url) | |
test_path = tf.keras.utils.get_file(test_ds_url.split('/')[-1], test_ds_url) | |
train = pd.read_csv(train_path, names=ds_columns, header=0) | |
train_plantfeatures, train_categories = train, train.pop(categories) | |
test = pd.read_csv(test_path, names=ds_columns, header=0) | |
test_plantfeatures, test_categories = test, test.pop(categories) | |
y_categorical = tf.keras.utils.to_categorical(train_categories, num_classes=3) | |
y_categorical_test = tf.keras.utils.to_categorical(test_categories, num_classes=3) | |
#build dataset | |
#def build_dataset(): | |
dataset = tf.data.Dataset.from_tensor_slices((train_plantfeatures.values, y_categorical)) | |
dataset = dataset.batch(32) | |
dataset = dataset.shuffle(1000) | |
dataset = dataset.repeat() | |
dataset_test = tf.data.Dataset.from_tensor_slices((test_plantfeatures.values, y_categorical_test)) | |
dataset_test = dataset_test.batch(32) | |
dataset_test = dataset_test.shuffle(1000) | |
dataset_test = dataset_test.repeat() | |
#build model | |
model = tf.keras.Sequential([ | |
tf.keras.layers.Dense(16, input_dim=4), | |
tf.keras.layers.Dense(3, activation=tf.nn.softmax), | |
]) | |
model.summary() | |
model.compile(loss='categorical_crossentropy', | |
optimizer='sgd', | |
metrics=['accuracy']) | |
#train model | |
model.fit(dataset, steps_per_epoch=32, epochs=100, verbose=1) | |
#eval model | |
loss, accuracy = model.evaluate(dataset_test, steps=32) | |
print("loss:%f"% (loss)) | |
print("accuracy: %f"% (accuracy)) | |
# predict | |
new_specie = np.array([7.9,3.8,6.4,2.0]) | |
predition = np.around(model.predict(np.expand_dims(new_specie, axis=0))).astype(np.int)[0] | |
print(model.predict(np.expand_dims(new_specie, axis=0))) | |
print("This species should be %s" % species[predition.astype(np.bool)][0]) | |
model.predict(np.expand_dims(new_specie, axis=0)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment