Created
January 14, 2025 23:49
-
-
Save ncfavier/afacafcab76f517c2a320a6f88258bb7 to your computer and use it in GitHub Desktop.
Exercise 2.11 from the HoTT book
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --without-K #-} | |
open import Agda.Primitive renaming (Set to Type) | |
open import Data.Product | |
open import Data.Product.Properties | |
open import Function.Base | |
open import Relation.Binary.PropositionalEquality | |
open import Axiom.Extensionality.Propositional | |
module Pullback (funext : Extensionality _ _) where | |
module _ {A B C : Type} (f : A → C) (g : B → C) where | |
Pullback = Σ A λ a → Σ B λ b → f a ≡ g b | |
π₁ : Pullback → A | |
π₁ (a , b , p) = a | |
π₂ : Pullback → B | |
π₂ (a , b , p) = b | |
square : ∀ x → f (π₁ x) ≡ g (π₂ x) | |
square (a , b , p) = p | |
module _ {A B C : Type} (f : A → C) (g : B → C) (X : Type) where | |
φ : (X → Pullback f g) → Pullback {X → A} {X → B} {X → C} (f ∘_) (g ∘_) | |
φ h = π₁ f g ∘ h , π₂ f g ∘ h , funext (square f g ∘ h) | |
φ⁻¹ : Pullback {X → A} {X → B} {X → C} (f ∘_) (g ∘_) → (X → Pullback f g) | |
φ⁻¹ (p₁ , p₂ , sq) x = p₁ x , p₂ x , cong (λ f → f x) sq | |
φ-φ⁻¹ : ∀ f → φ (φ⁻¹ f) ≡ f | |
φ-φ⁻¹ (p₁ , p₂ , sq) = Σ-≡,≡→≡ (refl , Σ-≡,≡→≡ (refl , {! funext ∘ happly ≡ id !})) | |
φ⁻¹-φ : ∀ f → φ⁻¹ (φ f) ≡ f | |
φ⁻¹-φ f = funext (λ x → Σ-≡,≡→≡ (refl , Σ-≡,≡→≡ (refl , {! happly ∘ funext ≡ id !}))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment