Created
April 13, 2017 19:36
-
-
Save ncullen93/58e71c4303b89e420bd8e0b0aa54bf48 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def pearsonr(x, y): | |
""" | |
Mimics `scipy.stats.pearsonr` | |
Arguments | |
--------- | |
x : 1D torch.Tensor | |
y : 1D torch.Tensor | |
Returns | |
------- | |
r_val : float | |
pearsonr correlation coefficient between x and y | |
Scipy docs ref: | |
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html | |
Scipy code ref: | |
https://github.com/scipy/scipy/blob/v0.19.0/scipy/stats/stats.py#L2975-L3033 | |
Example: | |
>>> x = np.random.randn(100) | |
>>> y = np.random.randn(100) | |
>>> sp_corr = scipy.stats.pearsonr(x, y)[0] | |
>>> th_corr = pearsonr(torch.from_numpy(x), torch.from_numpy(y)) | |
>>> np.allclose(sp_corr, th_corr) | |
""" | |
mean_x = torch.mean(x) | |
mean_y = torch.mean(y) | |
xm = x.sub(mean_x) | |
ym = y.sub(mean_y) | |
r_num = xm.dot(ym) | |
r_den = torch.norm(xm, 2) * torch.norm(ym, 2) | |
r_val = r_num / r_den | |
return r_val | |
def corrcoef(x): | |
""" | |
Mimics `np.corrcoef` | |
Arguments | |
--------- | |
x : 2D torch.Tensor | |
Returns | |
------- | |
c : torch.Tensor | |
if x.size() = (5, 100), then return val will be of size (5,5) | |
Numpy docs ref: | |
https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html | |
Numpy code ref: | |
https://github.com/numpy/numpy/blob/v1.12.0/numpy/lib/function_base.py#L2933-L3013 | |
Example: | |
>>> x = np.random.randn(5,120) | |
# result is a (5,5) matrix of correlations between rows | |
>>> np_corr = np.corrcoef(x) | |
>>> th_corr = corrcoef(torch.from_numpy(x)) | |
>>> np.allclose(np_corr, th_corr.numpy()) | |
# [out]: True | |
""" | |
# calculate covariance matrix of rows | |
mean_x = torch.mean(x, 1) | |
xm = x.sub(mean_x.expand_as(x)) | |
c = xm.mm(xm.t()) | |
c = c / (x.size(1) - 1) | |
# normalize covariance matrix | |
d = torch.diag(c) | |
stddev = torch.pow(d, 0.5) | |
c = c.div(stddev.expand_as(c)) | |
c = c.div(stddev.expand_as(c).t()) | |
# clamp between -1 and 1 | |
# probably not necessary but numpy does it | |
c = torch.clamp(c, -1.0, 1.0) | |
return c |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment