Last active
August 29, 2015 13:56
-
-
Save nden/9329645 to your computer and use it in GitHub Desktop.
Fitting a straight line example
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from astropy.modeling.fitting import (_validate_model, _fitter_to_model_params, Fitter, _convert_input) | |
from astropy.modeling.optimizers import * | |
def chi_line(measured_vals, updated_model, x_sigma, y_sigma, x): | |
""" | |
Chi^2 statistic for fitting a straight line with uncertainties in x and y. | |
Parameters | |
---------- | |
measured_vals : array | |
updated_model : an instance of `~astropy.modeling.ParametricModel` | |
model with parameters set by the current iteration of the optimizer | |
x_sigma/y_sigma : array | |
uncertainties in x/y | |
""" | |
model_vals = updated_model(x) | |
if x_sigma is None and y_sigma is None: | |
return np.sum((model_vals - measured_vals) ** 2) | |
elif x_sigma is not None and y_sigma is not None: | |
weights = 1 / (y_sigma**2 + updated_model.parameters[1]**2 * x_sigma ** 2) | |
return np.sum((weights * (model_vals - measured_vals)) ** 2) | |
else: | |
if x_sigma is not None: | |
weights = 1 / x_sigma ** 2 | |
else: | |
weights = 1 / y_sigma ** 2 | |
return np.sum((weights * (model_vals - measured_vals)) ** 2) | |
class LineFitter(Fitter): | |
""" | |
Fit a straight line with uncertainties in both variables | |
Parameters | |
---------- | |
optimizer : class or callable | |
one of the classes in optimizers.py (default: Simplex) | |
""" | |
def __init__(self, optimizer=Simplex): | |
self.statistic = chi_line | |
super(LineFitter, self).__init__(optimizer, statistic=self.statistic) | |
def __call__(self, model, x, y, x_sigma=None, y_sigma=None, **kwargs): | |
""" | |
Fit data to this model. | |
Parameters | |
---------- | |
model : `ParametricModel` | |
model to fit to x, y, z | |
x : array | |
input coordinates | |
y : array | |
input coordinates | |
x_sigma : array | |
uncertainties in x | |
y_sigma : array | |
uncertainties in y | |
kwargs : dict | |
optional keyword arguments to be passed to the optimizer or the statistic | |
Returns | |
------ | |
model_copy : `ParametricModel` | |
a copy of the input model with parameters set by the fitter | |
""" | |
model_copy = _validate_model(model, self._opt_method.supported_constraints) | |
farg = _convert_input(x, y) | |
farg = (model_copy, x_sigma, y_sigma) + farg | |
p0, _ = model_copy._model_to_fit_params() | |
fitparams, self.fit_info = self._opt_method( | |
self.objective_function, p0, farg, **kwargs) | |
_fitter_to_model_params(model_copy, fitparams) | |
return model_copy | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment