Skip to content

Instantly share code, notes, and snippets.

@ndevenish
Last active January 31, 2022 09:56
Show Gist options
  • Save ndevenish/079eb17365b21d2044ac146f67dbb499 to your computer and use it in GitHub Desktop.
Save ndevenish/079eb17365b21d2044ac146f67dbb499 to your computer and use it in GitHub Desktop.
Loading DIALS reflection tables with only Numpy
"""
DIALS .refl file loader
This loads msgpack-type DIALS reflection files, without having DIALS or
cctbx in the python environment.
Note: All modern .refl files are at time of writing msgpack-based. Some
much older files might be in pickle format, which this doesn't read.
Usage:
>>> import refl_loader, pathlib
>>> refl_file = Path("/path/to/a/reftable.refl")
>>> print(refl_loader.load(refl_file))
or
>>> print(refl_loader.loads(refl_file.read_bytes()))
"""
import functools
import operator
import os
import struct
import sys
from collections.abc import Iterable
from io import BytesIO
from pathlib import Path
from typing import IO, Dict, List, NamedTuple, Optional, Tuple, Union, cast
import msgpack
import numpy as np
class Shoebox(NamedTuple):
panel: int
bbox: Tuple[int]
data: np.array = None
mask: np.array = None
background: np.array = None
def _decode_raw_numpy(dtype, shape: Union[int, Iterable[int]] = 1):
"""
Decoding a column that maps straight to a numpy array.
Args:
dtype: The numpy dtype for the array
shape:
The shape of a single item. Either an int, or a collection
of ints, in C-array order (row major)
"""
# Convert to a shape tuple
if isinstance(shape, int):
shape = (shape,)
else:
shape = tuple(shape)
def _decode_specific(data, copy):
num_items, raw = data
array = np.frombuffer(raw, dtype=dtype)
if shape != (1,):
item_width = functools.reduce(operator.mul, shape)
assert len(raw) % item_width == 0
assert num_items * item_width == len(array)
array = array.reshape(num_items, *shape)
if copy:
return np.copy(array)
return array
return _decode_specific
def _decode_shoeboxes(data: List, copy) -> List[Optional[Shoebox]]:
# Shoebox is float
num_items, raw = data
shoeboxes: List[Optional[Shoebox]] = []
pos = 0
while pos < len(raw):
sbox_header_fmt = "<IiiiiiiB"
sb_info = struct.unpack_from(sbox_header_fmt, raw, pos)
pos += struct.calcsize(sbox_header_fmt)
panel = sb_info[0]
bbox = sb_info[1:7]
data_present = sb_info[7]
shoebox = {"panel": panel, "bbox": bbox}
if data_present:
bbox_size = (bbox[5] - bbox[4], bbox[3] - bbox[2], bbox[1] - bbox[0])
data_size = (bbox_size[0] * bbox_size[1] * bbox_size[2]) * 4
# Read three sets of data: data, mask and background
shoebox["data"] = np.frombuffer(
raw[pos : pos + data_size], dtype=np.float32
).reshape(bbox_size)
pos += data_size
shoebox["mask"] = np.frombuffer(
raw[pos : pos + data_size], dtype=np.int32
).reshape(bbox_size)
pos += data_size
shoebox["background"] = np.frombuffer(
raw[pos : pos + data_size], dtype=np.float32
).reshape(bbox_size)
pos += data_size
if copy:
shoebox["data"] = np.copy(shoebox["data"])
shoebox["mask"] = np.copy(shoebox["mask"])
shoebox["background"] = np.copy(shoebox["background"])
# Although this is technically a divergence, return None instead of an empty shoebox
if not data_present and all(x == 0 for x in bbox) and panel == 0:
shoeboxes.append(None)
else:
shoeboxes.append(Shoebox(**shoebox))
assert num_items == len(shoeboxes)
return np.array(shoeboxes, dtype=np.object_)
# Mapping from type name to decoder function
_reftable_decoders = {
"bool": _decode_raw_numpy(bool),
"int": _decode_raw_numpy(np.int32),
"double": _decode_raw_numpy(np.double),
"int6": _decode_raw_numpy(np.int32, shape=6),
"std::size_t": _decode_raw_numpy(np.uint64),
"vec3<double>": _decode_raw_numpy(np.double, shape=3),
"cctbx::miller::index<>": _decode_raw_numpy(np.int32, shape=3),
"Shoebox<>": _decode_shoeboxes,
"vec2<double>": _decode_raw_numpy(np.double, shape=2),
"mat3<double>": _decode_raw_numpy(np.double, shape=(3, 3)),
# "std::string": _decode_wip, # - string writing broken; dials/dials#1858
}
def decode_column(column_entry, copy):
"""Decode a single column value"""
datatype, data = column_entry
converter = _reftable_decoders.get(datatype)
if not converter:
print(f"Warning: Data type '{datatype}' does not have a converter; cannot read")
return None
return converter(data, copy=copy)
def _get_unpacked(stream_or_path: Union[str, IO, bytes, os.PathLike]):
"""Works out the logic to pass a stream/pathlike to msgpack"""
try:
print(type(stream_or_path))
path = os.fspath(cast(str, stream_or_path))
is_fspathlike = True
except (TypeError, ValueError):
is_fspathlike = isinstance(stream_or_path, str)
if is_fspathlike:
with open(path, "rb") as f:
un = msgpack.Unpacker(f, strict_map_key=False)
return un.unpack()
else:
un = msgpack.Unpacker(stream_or_path, strict_map_key=False)
return un.unpack()
def loads(data: bytes, copy=False):
"""
Load a DIALS msgpack-encoded .refl file.
Args:
data: bytes data, already read from the file.
copy: Should the data be copied into writable numpy arrays.
Returns: See .load(stream_or_path)
"""
return load(BytesIO(data), copy)
def load(stream_or_path: Union[IO, os.PathLike], copy=False) -> Dict:
"""
Load a DIALS msgpack-encoded .refl file
Args:
stream_or_path: The filename or data to load
copy:
Should the data be copied. This will cause more memory usage
whilst loading the raw data.
Returns:
A dictionary with each column in the reflection table. If there
is an identifier mapping as part of the reflection table, then
this is returned as an extra 'experiment_identifier' column.
All columns except Shoeboxes are returned as numpy arrays,
except Shoebox columns, which are returned as NamedTuple objects
which contains the portions of data from the file.
With copy=False, all numpy arrays are pointing against the raw
memory returned by msgpack, which means they are read-only.
With copy=True, an immediate copy is done. This causes memory
usage to double while loading, but the created numpy arrays own
their own memory.
"""
root_data = _get_unpacked(stream_or_path)
if not root_data[0] == "dials::af::reflection_table":
raise ValueError("Does not appear to be a dials reflection table file")
if not root_data[1] == 1:
raise ValueError(
f"reflection_table data is version {root_data[1]}. Only Version 1 is understood"
)
refdata = root_data[2]
rows = refdata["nrows"]
identifiers = refdata["identifiers"]
data = refdata["data"]
decoded_data = {
name: decode_column(value, copy=copy) for name, value in data.items()
}
# Filter out empty (unknown) columns
decoded_data = {k: v for k, v in decoded_data.items() if v is not None}
# Cross-check the columns are the expected lengths
for name, column in decoded_data.items():
if len(column) != rows:
print(
f"Warning: Mismatch of column lengths: {name} is {len(column)} instead of expected {rows}"
)
# Make an "identifiers" column
if "id" in decoded_data and identifiers:
decoded_data["experiment_identifier"] = [
identifiers[x] for x in decoded_data["id"]
]
return decoded_data
# Everything under here is optional stuff for demoing capabilities or
# generating and running test data
if __name__ == "__main__":
import argparse
import pprint
def _write_test_file():
import dials.array_family.flex as flex
ref = flex.reflection_table()
ref["bool"] = flex.bool([True, False] * 5)
ref["int"] = flex.int(range(10))
ref["std::size_t"] = flex.size_t(range(10))
ref["double"] = flex.double(range(10))
ref["vec2<double>"] = flex.vec2_double([(x + 1, x + 2) for x in range(10)])
ref["vec3<double>"] = flex.vec3_double(
[(x + 1, x + 2, x + 3) for x in range(10)]
)
ref["int6"] = flex.int6(
[(x + 1, x + 2, x + 3, x + 4, x + 5, x + 6) for x in range(10)]
)
ref["cctbx::miller::index<>"] = flex.miller_index(
[(x + 1, x + 2, x + 3) for x in range(10)]
)
ref["Shoebox<>"] = flex.shoebox(10)
ref["mat3<double>"] = flex.mat3_double(
[[x + y for y in range(9)] for x in range(10)]
)
ref.as_msgpack_file("test.refl")
print(f"Written test reflection file {Path.cwd()/'test.refl'}")
parser = argparse.ArgumentParser(
description="Read a DIALS reflection table with only numpy"
)
parse_group = parser.add_mutually_exclusive_group(required=True)
parse_group.add_argument(
"--write-test",
help="Write a test .refl file. Must be run inside cctbx environment.",
action="store_true",
)
parse_group.add_argument(
"FILE", help="Reflection filename to read", type=Path, nargs="?"
)
args = parser.parse_args()
if args.write_test:
try:
_write_test_file()
except ModuleNotFoundError:
sys.exit(
"Error: Could not import flex. Please run --write-test inside a cctbx environment"
)
else:
pprint.pprint(load(args.FILE))
def test_reading():
test_file = Path("test.refl")
assert (
test_file.is_file()
), "Please generate test file inside cctbx environment with 'libtbx.python refl_loader.py --write-test'"
ref = load(test_file)
expected_data = {
"bool": np.array([True, False] * 5, dtype=bool),
"int": np.array(range(10), dtype=np.int32),
"std::size_t": np.array(range(10), dtype=np.uint64),
"double": np.array(range(10), dtype=np.double),
"vec2<double>": np.array([(x + 1, x + 2) for x in range(10)], dtype=np.double),
"vec3<double>": np.array(
[(x + 1, x + 2, x + 3) for x in range(10)], dtype=np.double
),
"int6": np.array(
[(x + 1, x + 2, x + 3, x + 4, x + 5, x + 6) for x in range(10)],
dtype=np.int32,
),
"cctbx::miller::index<>": np.array(
[(x + 1, x + 2, x + 3) for x in range(10)], dtype=np.double
),
"Shoebox<>": np.array([None] * 10, dtype=np.object_),
"mat3<double>": np.array(
[np.array([x + y for y in range(9)]).reshape((3, 3)) for x in range(10)],
dtype=np.double,
),
}
unexpected_columns = set(ref.keys()) - set(expected_data.keys())
assert not unexpected_columns
# Go through each column and compare the value we got with expected
for column, value in ref.items():
assert (value == expected_data[column]).all()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment