Created
July 11, 2022 12:31
-
-
Save neelindresh/196a815a9e9de7d2ad0e8192e47fb5e6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.datasets import load_iris | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from pymlpipe.tabular import PyMLPipe | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.tree import DecisionTreeClassifier | |
from xgboost import XGBClassifier | |
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score | |
mlp=PyMLPipe() | |
mlp.set_experiment("IrisDataV2") | |
mlp.set_version(0.1) | |
iris_data=load_iris() | |
data=iris_data["data"] | |
target=iris_data["target"] | |
df=pd.DataFrame(data,columns=iris_data["feature_names"]) | |
#df["target"]=target | |
trainx,testx,trainy,testy=train_test_split(df,target) | |
with mlp.run(): | |
mlp.set_tags(["Classification","test run","logisticRegression"]) | |
model=LogisticRegression() | |
model.fit(trainx, trainy) | |
predictions=model.predict(testx) | |
mlp.log_metrics({"Accuracy":accuracy_score(testy,predictions), | |
"Precision": precision_score(testy,predictions,average='macro'), | |
"Recall": recall_score(testy,predictions,average='macro'), | |
"F1": f1_score(testy,predictions,average='macro') | |
}) | |
mlp.register_artifact("train.csv", trainx) | |
mlp.register_artifact("test.csv", testx,artifact_type="testing") | |
mlp.scikit_learn.register_model("logistic regression", model) | |
with mlp.run(): | |
mlp.set_tags(["Classification","test run","dtree"]) | |
model=DecisionTreeClassifier() | |
model.fit(trainx, trainy) | |
predictions=model.predict(testx) | |
mlp.log_metrics({"Accuracy":accuracy_score(testy,predictions),"Precision": precision_score(testy,predictions,average='macro')}) | |
mlp.log_metric("Recall", recall_score(testy,predictions,average='macro')) | |
mlp.log_metric("F1", f1_score(testy,predictions,average='macro')) | |
#mlp.log_metrics({"r2":0.1,"mse":1.1}) | |
mlp.register_artifact("train.csv", trainx) | |
mlp.register_artifact("test.csv", testx,artifact_type="testing") | |
mlp.scikit_learn.register_model("dtree", model) | |
with mlp.run(): | |
mlp.set_tags(["Classification","test run","rf"]) | |
model=RandomForestClassifier() | |
model.fit(trainx, trainy) | |
predictions=model.predict(testx) | |
mlp.log_metric("Accuracy", accuracy_score(testy,predictions)) | |
mlp.log_metric("Precision", precision_score(testy,predictions,average='macro')) | |
mlp.log_metric("Recall", recall_score(testy,predictions,average='macro')) | |
mlp.log_metric("F1", f1_score(testy,predictions,average='macro')) | |
mlp.register_artifact("train.csv", trainx,) | |
mlp.register_artifact("test.csv", testx,artifact_type="testing") | |
mlp.scikit_learn.register_model("randomForest", model) | |
with mlp.run(): | |
mlp.set_tags(["Classification","test run","xgb"]) | |
model=XGBClassifier() | |
model.fit(trainx, trainy) | |
predictions=model.predict(testx) | |
mlp.log_metric("Accuracy", accuracy_score(testy,predictions)) | |
mlp.log_metric("Precision", precision_score(testy,predictions,average='macro')) | |
mlp.log_metric("Recall", recall_score(testy,predictions,average='macro')) | |
mlp.log_metric("F1", f1_score(testy,predictions,average='macro')) | |
mlp.register_artifact("train.csv", trainx) | |
mlp.register_artifact("test.csv", testx,artifact_type="testing") | |
mlp.scikit_learn.register_model("xgboost", model) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment