Created
July 20, 2022 05:16
-
-
Save neelindresh/5a19fc98a6df09877ce0134f51304b95 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import pandas as pd | |
from sklearn.preprocessing import LabelEncoder | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import accuracy_score,f1_score | |
from pymlpipe.tabular import PyMLPipe | |
df=pd.read_csv("train.csv") | |
encoders=["area_code","state","international_plan","voice_mail_plan","churn"] | |
for i in encoders: | |
le=LabelEncoder() | |
df[i]=le.fit_transform(df[i]) | |
trainy=df["churn"] | |
trainx=df[['state', 'account_length', 'area_code', 'international_plan', | |
'voice_mail_plan', 'number_vmail_messages', 'total_day_minutes', | |
'total_day_calls', 'total_day_charge', 'total_eve_minutes', | |
'total_eve_calls', 'total_eve_charge', 'total_night_minutes', | |
'total_night_calls', 'total_night_charge', 'total_intl_minutes', | |
'total_intl_calls', 'total_intl_charge', | |
'number_customer_service_calls']] | |
class Model(torch.nn.Module): | |
def __init__(self,col_size): | |
super().__init__() | |
# using sequencial | |
self.seq=torch.nn.Sequential( | |
torch.nn.Linear(col_size,15), | |
torch.nn.ReLU(), | |
torch.nn.Linear(15,10), | |
torch.nn.ReLU(), | |
torch.nn.Linear(10,1) | |
) | |
#using torch layers | |
''' | |
self.linear_layer_1=torch.nn.Linear(col_size,15) | |
self.relu_1=torch.nn.ReLU() | |
self.linear_layer_2=torch.nn.Linear(15,10) | |
self.relu_2=torch.nn.ReLU() | |
self.linear_layer_3=torch.nn.Linear(10,1) | |
''' | |
def forward(self,x): | |
out=self.seq(x) | |
''' | |
out=self.relu_1(self.linear_layer_1(x)) | |
out=self.relu_12self.linear_layer_3(out)) | |
out=self.linear_layer_3(out) | |
''' | |
return torch.sigmoid(out) | |
model=Model(len(trainx.columns)) | |
train_x,test_x,train_y,test_y=train_test_split(trainx,trainy) | |
train_x=torch.from_numpy(train_x.values) | |
train_x=train_x.type(torch.FloatTensor) | |
train_y=torch.from_numpy(train_y.values) | |
train_y=train_y.type(torch.FloatTensor) | |
test_x=torch.from_numpy(test_x.values) | |
test_x=test_x.type(torch.FloatTensor) | |
test_y=torch.from_numpy(test_y.values) | |
test_y=test_y.type(torch.FloatTensor) | |
optimizer=torch.optim.SGD(model.parameters(),lr=0.001) | |
criterion=torch.nn.BCELoss() | |
def validate(model,testx,testy): | |
prediction=model(testx) | |
prediction=torch.where(prediction>.5,1,0) | |
accu=accuracy_score(prediction.detach().numpy(),test_y.unsqueeze(1).detach().numpy()) | |
f1=f1_score(prediction.detach().numpy(),test_y.unsqueeze(1).detach().numpy()) | |
return {"accuracy":accu,"f1":f1} | |
epochs=100 | |
batch_size=1000 | |
mlp=PyMLPipe() | |
mlp.set_experiment("Pytorch") | |
mlp.set_version(0.2) | |
with mlp.run(): | |
mlp.register_artifact("churndata.csv",df) | |
mlp.log_params({ | |
"lr":0.01, | |
"optimizer":"SGD", | |
"loss_fuction":"BCEloss" | |
}) | |
for epoch in range(epochs): | |
loss_batch=0 | |
for batch in range(1000,5000,1000): | |
optimizer.zero_grad() | |
train_data=train_x[batch-1000:batch] | |
output=model(train_data) | |
loss=criterion(output,train_y[batch-1000:batch].unsqueeze(1)) | |
loss.backward() | |
optimizer.step() | |
loss_batch+=loss.item() | |
metrics=validate(model,test_x,test_y) | |
metrics["loss"]=loss_batch | |
metrics["epoch"]=epoch | |
mlp.log_metrics_continious(metrics) | |
mlp.pytorch.register_model("pytorch_example1", model) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment