Skip to content

Instantly share code, notes, and snippets.

@neelindresh
Created July 18, 2022 12:23
Show Gist options
  • Save neelindresh/c210af6788098ed64402a7926f9f5769 to your computer and use it in GitHub Desktop.
Save neelindresh/c210af6788098ed64402a7926f9f5769 to your computer and use it in GitHub Desktop.
class Model(torch.nn.Module):
def __init__(self,col_size):
super().__init__()
# using sequencial
self.seq=torch.nn.Sequential(
torch.nn.Linear(col_size,15),
torch.nn.ReLU(),
torch.nn.Linear(15,10),
torch.nn.ReLU(),
torch.nn.Linear(10,1)
)
#using torch layers
'''
self.linear_layer_1=torch.nn.Linear(col_size,15)
self.relu_1=torch.nn.ReLU()
self.linear_layer_2=torch.nn.Linear(15,10)
self.relu_2=torch.nn.ReLU()
self.linear_layer_3=torch.nn.Linear(10,1)
'''
def forward(self,x):
out=self.seq(x)
'''
out=self.relu_1(self.linear_layer_1(x))
out=self.relu_12self.linear_layer_3(out))
out=self.linear_layer_3(out)
'''
return torch.sigmoid(out)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment