Skip to content

Instantly share code, notes, and snippets.

import numpy as np
import cv2
import math
from scipy import ndimage
import matplotlib.pyplot as plt
from lxml import etree
import xml.etree.cElementTree as xml
import os
from PIL import Image
"""Tools for satellite imagery pre-processing"""
from sklearn.datasets import load_iris
iris_data=load_iris()
data=iris_data["data"]
target=iris_data["target"]
df=pd.DataFrame(data,columns=iris_data["feature_names"])
from pymlpipe.tabular import PyMLPipe
mlp=PyMLPipe()
mlp.set_experiment("IrisDataV2")
mlp.set_version(0.1)
from sklearn.model_selection import train_test_split
trainx,testx,trainy,testy=train_test_split(df,target)
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score
with mlp.run():
mlp.set_tags(["Classification","test run","dtree"])
model=DecisionTreeClassifier()
model.fit(trainx, trainy)
predictions=model.predict(testx)
mlp.log_metrics({"Accuracy":accuracy_score(testy,predictions),"Precision": precision_score(testy,predictions,average='macro')})
mlp.log_metric("Recall", recall_score(testy,predictions,average='macro'))
mlp.log_metric("F1", f1_score(testy,predictions,average='macro'))
from sklearn.datasets import load_iris
import pandas as pd
from sklearn.model_selection import train_test_split
from pymlpipe.tabular import PyMLPipe
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score
{
"data": [
[
5.6,
3.0,
4.5,
1.5
],
[
5.6,
import torch
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,f1_score
from pymlpipe.tabular import PyMLPipe
df=pd.read_csv("train.csv")
encoders=["area_code","state","international_plan","voice_mail_plan","churn"]
for i in encoders:
le=LabelEncoder()
df[i]=le.fit_transform(df[i])
trainy=df["churn"]
trainx=df[['state', 'account_length', 'area_code', 'international_plan',