Skip to content

Instantly share code, notes, and snippets.

import torch
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,f1_score
from pymlpipe.tabular import PyMLPipe
{
"data": [
[
5.6,
3.0,
4.5,
1.5
],
[
5.6,
from sklearn.datasets import load_iris
import pandas as pd
from sklearn.model_selection import train_test_split
from pymlpipe.tabular import PyMLPipe
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score
with mlp.run():
mlp.set_tags(["Classification","test run","dtree"])
model=DecisionTreeClassifier()
model.fit(trainx, trainy)
predictions=model.predict(testx)
mlp.log_metrics({"Accuracy":accuracy_score(testy,predictions),"Precision": precision_score(testy,predictions,average='macro')})
mlp.log_metric("Recall", recall_score(testy,predictions,average='macro'))
mlp.log_metric("F1", f1_score(testy,predictions,average='macro'))
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score
from sklearn.model_selection import train_test_split
trainx,testx,trainy,testy=train_test_split(df,target)
from pymlpipe.tabular import PyMLPipe
mlp=PyMLPipe()
mlp.set_experiment("IrisDataV2")
mlp.set_version(0.1)
from sklearn.datasets import load_iris
iris_data=load_iris()
data=iris_data["data"]
target=iris_data["target"]
df=pd.DataFrame(data,columns=iris_data["feature_names"])
import numpy as np
import cv2
import math
from scipy import ndimage
import matplotlib.pyplot as plt
from lxml import etree
import xml.etree.cElementTree as xml
import os
from PIL import Image
"""Tools for satellite imagery pre-processing"""
from gingerit.gingerit import GingerIt
parser = GingerIt()
#line==string you wanna correct
tweet=parser.parse(line)