Skip to content

Instantly share code, notes, and snippets.

@neelriyer
Created August 10, 2020 00:24
Show Gist options
  • Save neelriyer/e2ee03a713f2d842f0fff6ee16f63ca6 to your computer and use it in GitHub Desktop.
Save neelriyer/e2ee03a713f2d842f0fff6ee16f63ca6 to your computer and use it in GitHub Desktop.
convert waveform to matrix
from torch.autograd import Variable
import librosa
import numpy as np
import torch
N_FFT=2048
def read_audio_spectum(filename):
x, fs = librosa.load(filename)
S = librosa.stft(x, N_FFT)
p = np.angle(S)
S = np.log1p(np.abs(S))
return S, fs
style_audio, style_sr = read_audio_spectum(style_audio_name)
content_audio, content_sr = read_audio_spectum(content_audio_name)
if(content_sr != style_sr):
raise 'Sampling rates are not same'
style_audio = style_audio.reshape([1,1025,style_audio.shape[1]])
content_audio = content_audio.reshape([1,1025,style_audio.shape[1]])
if torch.cuda.is_available():
style_float = Variable((torch.from_numpy(style_audio)).cuda())
content_float = Variable((torch.from_numpy(content_audio)).cuda())
else:
style_float = Variable(torch.from_numpy(style_audio))
content_float = Variable(torch.from_numpy(content_audio))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment