Created
November 14, 2018 17:34
-
-
Save neerajvashistha/432a4c70de88a6378dceb34a5d345510 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.linear_model import LinearRegression, RANSACRegressor | |
# For reproducibility | |
np.random.seed(1000) | |
nb_samples = 200 | |
nb_noise_samples = 150 | |
def show_dataset(X, Y): | |
fig, ax = plt.subplots(1, 1, figsize=(30, 25)) | |
ax.scatter(X, Y) | |
ax.set_xlabel('X') | |
ax.set_ylabel('Y') | |
ax.grid() | |
plt.show() | |
# Create dataset | |
X = np.arange(-5, 5, 0.05) | |
Y = X + 2 | |
Y += np.random.uniform(-0.5, 0.5, size=nb_samples) | |
for i in range(nb_noise_samples, nb_samples): | |
Y[i] += np.random.uniform(12, 15) | |
# Show the dataset | |
show_dataset(X, Y) | |
from sklearn.linear_model import LinearRegression | |
lr = LinearRegression(normalize=True) | |
lr.fit(X.reshape((-1, 1)), Y.reshape((-1, 1))) | |
lr.intercept_ | |
lr.coef_ | |
from sklearn.linear_model import RANSACRegressor | |
rs = RANSACRegressor(lr) | |
rs.fit(X.reshape((-1, 1)), Y.reshape((-1, 1))) | |
rs.estimator_.intercept_ | |
rs.estimator_.coef_ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment