Created
September 16, 2018 18:10
-
-
Save neerajvashistha/96952890536c755ff49757e7bce853c0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
# In[29]: | |
import pandas as pd | |
import numpy as np | |
# In[52]: | |
emp = pd.read_csv("train_LZdllcl.csv") | |
emp1 = pd.read_csv("test_2umaH9m.csv") | |
# In[53]: | |
def transformations(dataframe): | |
dataframe['previous_year_rating'].fillna(0,inplace=True) | |
cleanup_nums = {"education":{"Master's & above":3,"Bachelor's":2,"Below Secondary":1}} | |
dataframe.replace(cleanup_nums,inplace=True) | |
dataframe['education'].fillna(2.0,inplace=True) | |
cleanup_nums = {"department":{"Sales & Marketing":9, "Operations":8, "Technology":7, "Analytics":6, "R&D":5,"Procurement":4, "Finance":3, "HR":2, "Legal":1}} | |
dataframe.replace(cleanup_nums,inplace=True) | |
cleanup_nums = {"region":{"region_7":7, "region_22":22, "region_19":19, "region_23":23, "region_26":26, | |
"region_2":2, "region_20":20, "region_34":34, "region_1":1, "region_4":4, | |
"region_29":29, "region_31":31, "region_15":15, "region_14":14, "region_11":11, | |
"region_5":5, "region_28":28, "region_17":17, "region_13":13, "region_16":16, | |
"region_25":25, "region_10":10, "region_27":27, "region_30":30, "region_12":12, | |
"region_21":21, "region_8":8, "region_32":32, "region_6":6, "region_33":33, | |
"region_24":24, "region_3":3, "region_9":9, "region_18":18}} | |
dataframe.replace(cleanup_nums,inplace=True) | |
cleanup_nums ={"gender":{"m":0,"f":1}} | |
dataframe.replace(cleanup_nums,inplace=True) | |
cleanup_nums ={"recruitment_channel":{"sourcing":0, "other":2, "referred":1}} | |
dataframe.replace(cleanup_nums,inplace=True) | |
dataframe['training_scr_35_50'] = np.where(np.logical_and(np.greater_equal(dataframe['avg_training_score'],35),np.less(dataframe['avg_training_score'],50)) , 1, 0) | |
dataframe['training_scr_50_65'] = np.where(np.logical_and(np.greater_equal(dataframe['avg_training_score'],50),np.less(dataframe['avg_training_score'],65)) , 1, 0) | |
dataframe['training_scr_65_80'] = np.where(np.logical_and(np.greater_equal(dataframe['avg_training_score'],65),np.less(dataframe['avg_training_score'],80)) , 1, 0) | |
dataframe['training_scr_85_100'] = np.where(np.logical_and(np.greater_equal(dataframe['avg_training_score'],85),np.less(dataframe['avg_training_score'],100)) , 1, 0) | |
dataframe['age_18_25'] = np.where(np.logical_and(np.greater_equal(dataframe['age'],18),np.less(dataframe['age'],25)) , 1, 0) | |
dataframe['age_25_35'] = np.where(np.logical_and(np.greater_equal(dataframe['age'],25),np.less(dataframe['age'],35)) , 1, 0) | |
dataframe['age_35_45'] = np.where(np.logical_and(np.greater_equal(dataframe['age'],35),np.less(dataframe['age'],45)) , 1, 0) | |
dataframe['age_45_60'] = np.where(np.logical_and(np.greater_equal(dataframe['age'],45),np.less(dataframe['age'],60)) , 1, 0) | |
dataframe['age_training'] = np.where(dataframe['no_of_trainings'] > 5 & dataframe['age_25_35'],1,0) | |
dataframe['KPI_training'] = np.where(0.3*np.array(dataframe['KPIs_met >80%']) + 0.7 * np.array(dataframe['training_scr_50_65']) > 0.5 ,1,0) | |
dataframe['education_age'] = np.where((dataframe['education']==2) & (dataframe['age_25_35']==1),1,0) | |
dataframe['region_max'] = np.where(((dataframe['region'] == 2) | (dataframe['region'] == 22) | (dataframe['region'] == 7)),1,0) | |
dataframe['len_serv_0_5'] = np.where(np.logical_and(np.greater_equal(dataframe['length_of_service'],0),np.less(dataframe['length_of_service'],5)) , 1, 0) | |
dataframe['len_serv_5_10'] = np.where(np.logical_and(np.greater_equal(dataframe['length_of_service'],5),np.less(dataframe['length_of_service'],10)) , 1, 0) | |
dataframe['len_serv_10_15'] = np.where(np.logical_and(np.greater_equal(dataframe['length_of_service'],10),np.less(dataframe['length_of_service'],15)) , 1, 0) | |
dataframe['len_serv_15_20'] = np.where(np.logical_and(np.greater_equal(dataframe['length_of_service'],15),np.less(dataframe['length_of_service'],20)) , 1, 0) | |
dataframe['len_serv_25'] = np.where(dataframe['length_of_service']>25 , 1, 0) | |
return dataframe | |
# In[54]: | |
emp_train = transformations(emp) | |
print(list(emp_train)) | |
emp_train.to_csv('train_feature.csv',index=False) | |
emp_test = transformations(emp1) | |
print(list(emp_test)) | |
emp_test['is_promoted'] = 0 | |
emp_test.to_csv('test_feature.csv',index=False) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment