-
Off-the-shelf Services
- OpenAI API (GPT models)
- Google Cloud AI
- Azure Cognitive Services
- Hugging Face models
-
Open Source Models
- Local LLMs (Llama, Mistral)
- Specialized models (Stable Diffusion, Whisper)
- Traditional ML libraries (scikit-learn)
-
Custom Solutions
- Fine-tuned models
- Domain-specific applications
- Hybrid approaches
# Basic Python for AI
import pandas as pd
from sklearn.model_selection import train_test_split
# Data handling example
def prepare_data(data_path):
df = pd.read_csv(data_path)
X = df.drop('target', axis=1)
y = df['target']
return train_test_split(X, y, test_size=0.2)
# Using OpenAI API
from openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Explain AI briefly"}
]
)
# Simple classification example
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
-
For Developers:
- Start with API integration
- Learn basic ML concepts
- Experiment with open-source models
-
For Business Users:
- Begin with no-code AI tools
- Focus on prompt engineering
- Understand AI capabilities and limitations
- Text Analysis Project
from transformers import pipeline
# Create sentiment analyzer
analyzer = pipeline("sentiment-analysis")
def analyze_feedback(text):
result = analyzer(text)
return {
'sentiment': result[0]['label'],
'confidence': f"{result[0]['score']:.2%}"
}
- Image Recognition Project
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
def classify_image(image_path):
image = Image.open(image_path)
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
return outputs
# Example of proper data handling
def preprocess_data(data):
# Remove duplicates
data = data.drop_duplicates()
# Handle missing values
data = data.fillna(data.mean())
# Normalize numerical columns
numerical_cols = data.select_dtypes(include=['float64', 'int64']).columns
data[numerical_cols] = (data[numerical_cols] - data[numerical_cols].mean()) / data[numerical_cols].std()
return data
from sklearn.metrics import accuracy_score, precision_score, recall_score
def evaluate_model(y_true, y_pred):
return {
'accuracy': accuracy_score(y_true, y_pred),
'precision': precision_score(y_true, y_pred, average='weighted'),
'recall': recall_score(y_true, y_pred, average='weighted')
}
-
Over-reliance on AI
- Not every problem needs AI
- Consider simpler solutions first
- Evaluate ROI carefully
-
Data Quality Issues
- Garbage in, garbage out
- Validate data quality
- Regular data cleaning
-
Cost Management
- Monitor API usage
- Optimize requests
- Use caching when possible
# Example of request caching
import functools
@functools.lru_cache(maxsize=1000)
def cached_ai_request(prompt):
return client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
-
Online Platforms
- Coursera: Machine Learning Specialization
- Fast.ai: Practical Deep Learning
- Hugging Face Courses
-
Books
- "Deep Learning" by Goodfellow, Bengio, and Courville
- "AI Powered Applications" by Lee Robinson
- "Designing Machine Learning Systems" by Chip Huyen
-
Practice Platforms
- Kaggle Competitions
- Google Colab
- Hugging Face Spaces
-
Start Small
- Begin with simple projects
- Focus on understanding fundamentals
- Build incrementally
-
Join Communities
- GitHub discussions
- Stack Overflow
- AI Discord servers
- Local meetups
-
Stay Updated
- Follow AI researchers on social media
- Subscribe to AI newsletters
- Participate in webinars