Skip to content

Instantly share code, notes, and snippets.

@neilmillard
Created January 7, 2025 22:20
Show Gist options
  • Save neilmillard/401d749aa32146bb39502cf4d4bf95f9 to your computer and use it in GitHub Desktop.
Save neilmillard/401d749aa32146bb39502cf4d4bf95f9 to your computer and use it in GitHub Desktop.
AI getting started

Getting Started with AI: The Essential Guide

1. Understanding the AI Landscape

Types of AI Solutions

  1. Off-the-shelf Services

    • OpenAI API (GPT models)
    • Google Cloud AI
    • Azure Cognitive Services
    • Hugging Face models
  2. Open Source Models

    • Local LLMs (Llama, Mistral)
    • Specialized models (Stable Diffusion, Whisper)
    • Traditional ML libraries (scikit-learn)
  3. Custom Solutions

    • Fine-tuned models
    • Domain-specific applications
    • Hybrid approaches

2. Essential Skills Checklist

Programming Fundamentals

# Basic Python for AI
import pandas as pd
from sklearn.model_selection import train_test_split

# Data handling example
def prepare_data(data_path):
    df = pd.read_csv(data_path)
    X = df.drop('target', axis=1)
    y = df['target']
    return train_test_split(X, y, test_size=0.2)

API Integration

# Using OpenAI API
from openai import OpenAI

client = OpenAI()
response = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Explain AI briefly"}
    ]
)

Basic ML Concepts

# Simple classification example
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)

3. Practical Starting Points

Step 1: Choose Your Entry Point

  • For Developers:

    • Start with API integration
    • Learn basic ML concepts
    • Experiment with open-source models
  • For Business Users:

    • Begin with no-code AI tools
    • Focus on prompt engineering
    • Understand AI capabilities and limitations

Step 2: Build Foundation Projects

  1. Text Analysis Project
from transformers import pipeline

# Create sentiment analyzer
analyzer = pipeline("sentiment-analysis")

def analyze_feedback(text):
    result = analyzer(text)
    return {
        'sentiment': result[0]['label'],
        'confidence': f"{result[0]['score']:.2%}"
    }
  1. Image Recognition Project
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image

def classify_image(image_path):
    image = Image.open(image_path)
    processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
    model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
    
    inputs = processor(images=image, return_tensors="pt")
    outputs = model(**inputs)
    return outputs

4. Best Practices

Data Management

# Example of proper data handling
def preprocess_data(data):
    # Remove duplicates
    data = data.drop_duplicates()
    
    # Handle missing values
    data = data.fillna(data.mean())
    
    # Normalize numerical columns
    numerical_cols = data.select_dtypes(include=['float64', 'int64']).columns
    data[numerical_cols] = (data[numerical_cols] - data[numerical_cols].mean()) / data[numerical_cols].std()
    
    return data

Model Evaluation

from sklearn.metrics import accuracy_score, precision_score, recall_score

def evaluate_model(y_true, y_pred):
    return {
        'accuracy': accuracy_score(y_true, y_pred),
        'precision': precision_score(y_true, y_pred, average='weighted'),
        'recall': recall_score(y_true, y_pred, average='weighted')
    }

5. Common Pitfalls to Avoid

  1. Over-reliance on AI

    • Not every problem needs AI
    • Consider simpler solutions first
    • Evaluate ROI carefully
  2. Data Quality Issues

    • Garbage in, garbage out
    • Validate data quality
    • Regular data cleaning
  3. Cost Management

    • Monitor API usage
    • Optimize requests
    • Use caching when possible
# Example of request caching
import functools

@functools.lru_cache(maxsize=1000)
def cached_ai_request(prompt):
    return client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[{"role": "user", "content": prompt}]
    )

6. Learning Resources

  1. Online Platforms

    • Coursera: Machine Learning Specialization
    • Fast.ai: Practical Deep Learning
    • Hugging Face Courses
  2. Books

    • "Deep Learning" by Goodfellow, Bengio, and Courville
    • "AI Powered Applications" by Lee Robinson
    • "Designing Machine Learning Systems" by Chip Huyen
  3. Practice Platforms

    • Kaggle Competitions
    • Google Colab
    • Hugging Face Spaces

7. Next Steps

  1. Start Small

    • Begin with simple projects
    • Focus on understanding fundamentals
    • Build incrementally
  2. Join Communities

    • GitHub discussions
    • Stack Overflow
    • AI Discord servers
    • Local meetups
  3. Stay Updated

    • Follow AI researchers on social media
    • Subscribe to AI newsletters
    • Participate in webinars
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment