Created
August 19, 2025 13:45
-
-
Save neozhaoliang/107188869acc654ef5965bf9aa798c49 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import collections | |
| import mpmath as mp | |
| import matplotlib.pyplot as plt | |
| mp.dps = 100 | |
| alpha = beta = 2.2 | |
| sq2 = mp.sqrt(2) | |
| gamma = (alpha * beta + mp.sqrt(alpha * alpha * beta * beta + 8 - 4 * (alpha * alpha+beta*beta)) )/ 2 | |
| delta = ((gamma - 2) * (beta + sq2)) / (beta * gamma - 2 * alpha + sq2 * 1j * gamma) | |
| a11 = alpha / 2 | |
| a12 = (alpha * gamma - 2 * beta + 2j * sq2) / ((2 * gamma + 4) * delta) | |
| a21 = (alpha * gamma - 2 * beta - 2j * sq2) * delta / (2 * gamma - 4) | |
| a22 = alpha / 2 | |
| a = mp.matrix([[a11, a12], [a21, a22]]) | |
| b11 = (beta - sq2 * 1j) / 2 | |
| b12 = (beta * gamma - 2 * alpha - sq2 * 1j * gamma) / ((2 * gamma + 4) * delta) | |
| b21 = (beta * gamma - 2 * alpha + sq2 * 1j * gamma) * delta / (2 * gamma - 4) | |
| b22 = (beta + sq2 * 1j) / 2 | |
| b = mp.matrix([[b11, b12], [b21, b22]]) | |
| A = mp.matrix([[a22, -a12], [-a21, a11]]) | |
| B = mp.matrix([[b22, -b12], [-b21, b11]]) | |
| I = mp.matrix([[1, 0], [0, 1]]) | |
| table = { | |
| "I": ["a", "b", "A", "B"], | |
| "a": ["a", "ab", None, "B"], | |
| "b": ["ba", "b", "bA", None], | |
| "A": [None, "b", "A", "AB"], | |
| "B": ["Ba", None, "BA", "B"], | |
| "ab": ["ba", "b", "abA", None], | |
| "AB": ["ABa", None, "BA", "B"], | |
| "ba": ["a", "ab", None, "baB"], | |
| "bA": [None, "b", "A", "bAB"], | |
| "Ba": ["a", "Bab", None, "B"], | |
| "BA": [None, "BAb", "A", "B"], | |
| "abA": [None, "b", "A", "abAB"], | |
| "ABa": ["a", "ABab", None, "B"], | |
| "baB": ["Ba", None, None, "B"], | |
| "bAB": [None, None, "BA", "B"], | |
| "Bab": ["ba", "b", None, None], | |
| "BAb": [None, "b", "bA", None], | |
| "abAB": [None, None, "BA", "B"], | |
| "ABab": ["ba", "b", None, None], | |
| } | |
| keys = list(table.keys()) | |
| def build_dict(li): | |
| d = {} | |
| for index, symbol in enumerate(["a", "b", "A", "B"]): | |
| pattern = li[index] | |
| if pattern is not None: | |
| d[symbol] = keys.index(pattern) | |
| return d | |
| AUTOMATON = {i: build_dict(table[keys[i]]) for i in range(len(keys))} | |
| print(AUTOMATON) | |
| def generate_group_elements(max_len): | |
| mats = [] | |
| queue = collections.deque([("", 0, I)]) | |
| while queue: | |
| word, state, M = queue.popleft() | |
| mats.append(M) | |
| if len(word) < max_len: | |
| for symbol, to in AUTOMATON[state].items(): | |
| queue.append( | |
| (word + symbol, to, M @ {"a": a, "b": b, "A": A, "B": B}[symbol]) | |
| ) | |
| return mats | |
| mats = generate_group_elements(8) | |
| xmin, xmax = -0.5, 0.5 | |
| ymin, ymax = -0.5, 0.5 | |
| image_width = 1000 | |
| image_height = 1000 | |
| super_sampling_level = 1 | |
| num_octaves = 4 | |
| num_steps = 8 | |
| zoom_factor = 10 | |
| grid_opacity = 0.5 | |
| shading_opacity = 0.16 | |
| def iterate(z): | |
| upper = mp.mpc(0) | |
| lower = mp.mpc(0) | |
| for m in mats: | |
| upper += 1 / ((m[0, 0] * z + m[0, 1]) * (m[1, 0] * z + m[1, 1]) ** 3) | |
| lower += 1 / (m[1, 0] * z + m[1, 1]) ** 4 | |
| return upper / lower | |
| mp.cplot( | |
| iterate, re=[-0.4, 0.4], im=[-0.4, 0.4], points=1000000, verbose=True, file="klein.png" | |
| ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment