Created
May 12, 2017 10:58
-
-
Save nestarz/5b163347960e37d10147e652c7918ca0 to your computer and use it in GitHub Desktop.
Caffe trainval definition for VGGM_PM_PM-33L base model
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "SuitAppNet-Hash64" | |
layer { | |
name: "data" | |
type: "Data" | |
top: "image" | |
top: "label" | |
include { | |
phase: TRAIN | |
} | |
transform_param { | |
mirror: true | |
crop_size: 224 | |
mean_file: "image_mean.binaryproto" | |
} | |
data_param { | |
source: "caffe_train_image_lmdb" | |
batch_size: 128 | |
backend: LMDB | |
} | |
} | |
layer { | |
name: "data" | |
type: "Data" | |
top: "image" | |
top: "label" | |
include { | |
phase: TEST | |
} | |
transform_param { | |
mirror: false | |
crop_size: 224 | |
mean_file: "image_mean.binaryproto" | |
} | |
data_param { | |
source: "caffe_val_image_lmdb" | |
batch_size: 32 | |
backend: LMDB | |
} | |
} | |
layer { | |
bottom: "image" | |
top: "conv1" | |
name: "conv1" | |
type: "Convolution" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 96 | |
kernel_size: 7 | |
stride: 2 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "conv1" | |
top: "conv1" | |
name: "relu1" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv1" | |
top: "norm1" | |
name: "norm1" | |
type: "LRN" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0005 | |
beta: 0.75 | |
k: 2 | |
} | |
} | |
layer { | |
bottom: "norm1" | |
top: "pool1" | |
name: "pool1" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool1" | |
top: "conv2" | |
name: "conv2" | |
type: "Convolution" | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
param { | |
lr_mult: 0 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 5 | |
stride: 2 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "conv2" | |
top: "conv2" | |
name: "relu2" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv2" | |
top: "norm2" | |
name: "norm2" | |
type: "LRN" | |
lrn_param { | |
local_size: 5 | |
alpha: 0.0005 | |
beta: 0.75 | |
k: 2 | |
} | |
} | |
layer { | |
bottom: "norm2" | |
top: "pool2" | |
name: "pool2" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool2" | |
top: "conv3" | |
name: "conv3" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "conv3" | |
top: "conv3" | |
name: "relu3" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv3" | |
top: "conv4" | |
name: "conv4" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "conv4" | |
top: "conv4" | |
name: "relu4" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv4" | |
top: "conv5" | |
name: "conv5" | |
type: "Convolution" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "gaussian" | |
std: 0.01 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "conv5" | |
top: "conv5" | |
name: "relu5" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "conv5" | |
top: "pool5" | |
name: "pool5" | |
type: "Pooling" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
bottom: "pool5" | |
top: "fc6" | |
name: "fc6" | |
type: "InnerProduct" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
inner_product_param { | |
num_output: 4096 | |
weight_filler { | |
type: "gaussian" | |
std: 0.005 | |
} | |
bias_filler { | |
type: "constant" | |
value: 1 | |
} | |
} | |
} | |
layer { | |
bottom: "fc6" | |
top: "fc6" | |
name: "relu6" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "fc6" | |
top: "fc6" | |
name: "drop6" | |
type: "Dropout" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
bottom: "fc6" | |
top: "fc7" | |
name: "fc7" | |
type: "InnerProduct" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
inner_product_param { | |
num_output: 1024 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "fc7" | |
top: "fc7" | |
name: "relu7" | |
type: "ReLU" | |
} | |
layer { | |
bottom: "fc7" | |
top: "fc7" | |
name: "drop7" | |
type: "Dropout" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
bottom: "fc7" | |
top: "suitapp/encoding" | |
name: "suitapp/encoding" | |
type: "InnerProduct" | |
param { | |
lr_mult: 10 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 20 | |
decay_mult: 0 | |
} | |
inner_product_param { | |
num_output: 64 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
bottom: "suitapp/encoding" | |
top: "fc8/suitapp" | |
name: "fc8/suitapp" | |
type: "InnerProduct" | |
param { | |
lr_mult: 10 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 20 | |
decay_mult: 0 | |
} | |
inner_product_param { | |
num_output: 33 | |
weight_filler { | |
type: "xavier" | |
} | |
bias_filler { | |
type: "constant" | |
value: 0 | |
} | |
} | |
} | |
layer { | |
name: "accuracy/suitapp" | |
type: "Accuracy" | |
bottom: "fc8/suitapp" | |
bottom: "label" | |
top: "accuracy/suitapp" | |
include { | |
phase: TEST | |
} | |
} | |
layer { | |
name: "accuracy/top-3/suitapp" | |
type: "Accuracy" | |
bottom: "fc8/suitapp" | |
bottom: "label" | |
top: "accuracy/top-3/suitapp" | |
include { | |
phase: TEST | |
} | |
accuracy_param { | |
top_k: 3 | |
} | |
} | |
layer { | |
name: "loss/suitapp" | |
type: "SoftmaxWithLoss" | |
bottom: "fc8/suitapp" | |
bottom: "label" | |
top: "loss/suitapp" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment