Created
August 24, 2020 11:53
-
-
Save netsatsawat/6d10fed8be0309c8068efd3029eb0b28 to your computer and use it in GitHub Desktop.
Snippet of CNN model with data augmentation implementation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
train_gen = tf.keras.preprocessing.image.ImageDataGenerator(rotation_range=40, shear_range=0.2, zoom_range=0.2, | |
horizontal_flip=True, vertical_flip=True, rescale=1./255., | |
validation_split=0.2) | |
train_generator = train_gen.flow_from_directory(TRAIN_DIR, target_size=IMG_SIZE, batch_size=32, | |
class_mode='categorical', subset='training') | |
valid_generator = train_gen.flow_from_directory(TRAIN_DIR, target_size=IMG_SIZE, batch_size=32, | |
class_mode='categorical', subset='validation') | |
cnn_model2 = tf.keras.Sequential([ | |
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)), | |
tf.keras.layers.MaxPooling2D(2,2), | |
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'), | |
tf.keras.layers.MaxPooling2D(2,2), | |
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'), | |
tf.keras.layers.MaxPooling2D(2,2), | |
tf.keras.layers.Flatten(), | |
tf.keras.layers.Dense(128, activation=tf.nn.relu), | |
tf.keras.layers.Dense(N_CLASS, activation=tf.nn.softmax) | |
]) | |
cnn_model2.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.losses.CategoricalCrossentropy(), metrics=['accuracy']) | |
early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, mode='min') | |
cnn_hist2 = cnn_model2.fit_generator( | |
train_generator, | |
validation_data=valid_generator, | |
epochs=500, | |
callbacks=[tfdocs.modeling.EpochDots(), early_stopping], | |
verbose=0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment