Created
December 28, 2021 05:26
-
-
Save nevercast/7ee7cb53783db03a3eca11bf49743e37 to your computer and use it in GitHub Desktop.
Neural Network visualisations
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://stackoverflow.com/questions/52468956/how-do-i-visualize-a-net-in-pytorch | |
import os | |
import numpy as np | |
import torch | |
from torch.distributions import Categorical | |
import torch.nn.functional as F | |
from rlgym.utils.gamestates import GameState, PlayerData, PhysicsObject | |
from training.obs import NectoObsBuilder | |
cur_dir = os.path.dirname(os.path.realpath(__file__)) | |
model = torch.load(os.path.join(cur_dir, "necto-model.pt")) | |
state = [8.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -3968.989990234375, -725.5199584960938, 164.6199951171875, -65.81099700927734, -279.9809875488281, 381.6910095214844, 4.006410121917725, -3.778909921646118, -0.6741099953651428, 3968.989990234375, 725.5199584960938, 164.6199951171875, 65.81099700927734, 279.9809875488281, 381.6910095214844, -4.006410121917725, 3.778909921646118, -0.6741099953651428, 1.0, 0.0, -2956.60986328125, -1385.469970703125, 17.0, -0.15378732979297638, -0.004750117193907499, -0.0007363896002061665, 0.9880921244621277, -1480.6510009765625, -464.58099365234375, 0.3309999704360962, 0.0, 0.0002099999983329326, 0.03440999612212181, 2956.60986328125, 1385.469970703125, 17.0, 0.9880921244621277, -0.0007363896002061665, 0.004750117193907499, 0.15378732979297638, 1480.6510009765625, 464.58099365234375, 0.3309999704360962, -0.0, -0.0002099999983329326, 0.03440999612212181, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 1.0, 0.0, 1.0, 0.24686768651008606, 5.0, 1.0, -3007.469970703125, 2445.449951171875, 17.010000228881836, -0.3034341037273407, -0.004550510086119175, -0.001470081857405603, 0.952840268611908, -877.9209594726562, -505.760986328125, 0.23099999129772186, 0.001509999972768128, 0.0008099999977275729, 2.3045098781585693, 3007.469970703125, -2445.449951171875, 17.010000228881836, 0.952840268611908, -0.001470081857405603, 0.004550510086119175, 0.3034341037273407, 877.9209594726562, 505.760986328125, 0.23099999129772186, -0.001509999972768128, -0.0008099999977275729, 2.3045098781585693, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.7634262442588806] | |
state = GameState(state) | |
obs_builder = NectoObsBuilder(n_players=2) | |
# Discrete actions | |
action = np.array([ | |
1, # throttle = 0 | |
1, # steer = 0 | |
1, # pitch = 0 | |
1, # yaw = 0 | |
1, # roll = 0 | |
0, # jump = False | |
0, # boost = False | |
0, # skrrt = False | |
]) | |
obs_builder.reset(state) | |
obs = obs_builder.build_obs(state.players[0], state, action) | |
# self.action = self.agent.act(obs) | |
state = tuple(torch.from_numpy(s).float() for s in obs) | |
with torch.no_grad(): | |
out = model(state) | |
max_shape = max(o.shape[-1] for o in out) | |
logits = torch.stack( | |
[ | |
l | |
if l.shape[-1] == max_shape | |
else F.pad(l, pad=(0, max_shape - l.shape[-1]), value=float("-inf")) | |
for l in out | |
] | |
).swapdims(0, 1).squeeze() | |
dist = Categorical(logits=logits) | |
actions = dist.sample().numpy() | |
actions = actions.reshape((-1, 5)) | |
actions[:, 0] = actions[:, 0] - 1 | |
actions[:, 1] = actions[:, 1] - 1 | |
parsed = np.zeros((actions.shape[0], 8)) | |
parsed[:, 0] = actions[:, 0] # throttle | |
parsed[:, 1] = actions[:, 1] # steer | |
parsed[:, 2] = actions[:, 0] # pitch | |
parsed[:, 3] = actions[:, 1] * (1 - actions[:, 4]) # yaw | |
parsed[:, 4] = actions[:, 1] * actions[:, 4] # roll | |
parsed[:, 5] = actions[:, 2] # jump | |
parsed[:, 6] = actions[:, 3] # boost | |
parsed[:, 7] = actions[:, 4] # handbrake | |
print(parsed[0]) | |
input_names = None # I have no idea | |
output_names = ['o0', 'o1', 'o2', 'o3', 'o4'] | |
torch.onnx.export(model, (state,), 'necto.onnx', input_names=input_names, output_names=output_names) | |
# from torchviz import make_dot | |
# make_dot(out, params=dict(list(model.named_parameters()))).render("torchviz", format="png") | |
# import hiddenlayer as hl | |
# GraphViz goes in ./bin | |
# os.environ['path'] += os.path.abspath(os.path.curdir + "\\bin") | |
# transforms = [ hl.transforms.Prune('Constant') ] # Removes Constant nodes from graph. | |
# graph = hl.build_graph(model, (state,))#, transforms=transforms) | |
# graph.theme = hl.graph.THEMES['blue'].copy() | |
# graph.save('layers', format='png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment