-
-
Save newmedia2/40ce4f8e663edf14e2c85d59de9abe49 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from datasets import load_dataset | |
from sentence_transformers.losses import CosineSimilarityLoss | |
from setfit import SetFitModel, SetFitTrainer | |
dataset = load_dataset("yelp_polarity") | |
print(dataset) | |
# Select N examples per class (8 in this case) | |
train_ds = dataset["train"].shuffle(seed=42).select(range(8 * 2)) | |
test_ds = dataset["test"]#.shuffle(seed=42).select(range(10000)) | |
print(train_ds) | |
print(test_ds) | |
# Load SetFit model from Hub | |
model = SetFitModel.from_pretrained("sentence-transformers/paraphrase-mpnet-base-v2") | |
# Create trainer | |
trainer = SetFitTrainer( | |
model=model, | |
train_dataset=train_ds, | |
eval_dataset=test_ds, | |
metric="accuracy", | |
loss_class=CosineSimilarityLoss, | |
batch_size=16, | |
num_iterations=16, # Number of text pairs to generate for contrastive learning | |
num_epochs=1, # Number of epochs to use for contrastive learning, | |
) | |
# Train and evaluate! | |
trainer.train() | |
metrics = trainer.evaluate() | |
print(metrics) | |
# model._save_pretrained(save_directory) | |
# saved_model = SetFitModel._from_pretrained(save_directory) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment