Created
May 1, 2022 18:50
-
-
Save ngimel/a32881a37687e82759a4d7d313080ec0 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import triton | |
import triton.language as tl | |
#@triton.jit | |
def mul_sum_kernel( | |
output_ptr, input_ptr0, input_ptr1, | |
si00, si01, si02, si03, | |
si10, si11, si12, si13, | |
so0, so2, so3, sz1, sz2, sz3, | |
BLOCK_SIZE: tl.constexpr | |
): | |
inner_idx = tl.program_id(0) | |
outer_idx = tl.program_id(1) | |
inp_ptr0 = input_ptr0 + outer_idx * si00 | |
inp_ptr1 = input_ptr1 + outer_idx * si10 | |
out_ptr = output_ptr + outer_idx * so0 | |
offsets = tl.arange(0, BLOCK_SIZE) + inner_idx * BLOCK_SIZE | |
mask = offsets < sz2 * sz3 | |
i2 = offsets//sz3 | |
i3 = offsets - i2 * sz3 | |
offsets0 = i3 * si03 + i2 * si02 | |
offsets1 = i3 * si13 + i2 * si12 | |
accum = tl.zeros((BLOCK_SIZE,), dtype=tl.float32) | |
for i in range(sz1): | |
# Load the row into SRAM, using a mask since BLOCK_SIZE may be > than number of valid values | |
vals0 = tl.load(inp_ptr0+offsets0, mask = mask).to(tl.float32) | |
vals1 = tl.load(inp_ptr1+offsets1, mask = mask).to(tl.float32) | |
accum += vals0 * vals1 | |
inp_ptr0 += si01 | |
inp_ptr1 += si11 | |
#accum = accum.to(tl.bfloat16) | |
o_offsets = i3 * so3 + i2 * so2 | |
tl.store(out_ptr+o_offsets, accum, mask = mask) | |
# %% | |
# We can create a helper function that enqueues the kernel and its (meta-)arguments for any given input tensor. | |
def mul_sum(x0, x1): | |
x1 = x1.expand_as(x0) | |
s0, s1, s2, s3 = x0.shape | |
si00, si01, si02, si03 = x0.stride() | |
si10, si11, si12, si13 = x1.stride() | |
BLOCK_SIZE = 1024 | |
num_warps = 4 | |
grid = lambda meta: (triton.cdiv(s2*s3, meta['BLOCK_SIZE']),s0) | |
# Allocate output | |
y = torch.empty(s0, s2, s3, device=x0.device, dtype=x0.dtype) | |
so0, so2, so3 = y.stride() | |
jitted_fn = triton.jit(mul_sum_kernel) | |
jitted_fn[grid]( | |
y, | |
x0, | |
x1, | |
si00, si01, si02, si03, | |
si10, si11, si12, si13, | |
so0, so2, so3, | |
s1, s2, s3, | |
num_warps=num_warps, | |
BLOCK_SIZE=BLOCK_SIZE, | |
) | |
# for v in jitted_fn.bin_cache.values(): | |
# print(v.asm["ptx"]) | |
return y | |
torch.manual_seed(0) | |
for s in (16,15): | |
dtype=torch.bfloat16 | |
x0 = torch.randn(32,2,256,s*s, device='cuda', dtype=dtype) | |
x1 = torch.randn(32,2,256,1*1,device="cuda", dtype=dtype) | |
for _ in range(1): | |
y_triton = mul_sum(x0, x1) | |
y_torch = (x0*x1).sum(1) | |
y_torch = (x0.float()*x1.float()).sum(1).to(x0.dtype) | |
print(y_torch.dtype) | |
print((y_triton-y_torch).abs().max()) | |
#assert torch.allclose(y_triton, y_torch), (y_triton[0][0], y_torch[0][0]) | |
# def t(input1, input2): | |
# return((input1*input2).sum(1)) | |
# scripted = torch.jit.script(t) | |
# with torch.jit.fuser("fuser2"): | |
# for _ in range(10): | |
# out = scripted(x0, x1) | |
#assert torch.allclose(out, y_torch)#, (y_triton, y_torch) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment