-
-
Save ngocdaothanh/3764694 to your computer and use it in GitHub Desktop.
package recfun | |
import scala.collection.mutable.ListBuffer | |
import common._ | |
/** https://class.coursera.org/progfun-2012-001/assignment/view?assignment_id=4 */ | |
object Main { | |
def main(args: Array[String]) { | |
println("Pascal's Triangle") | |
for (row <- 0 to 10) { | |
for (col <- 0 to row) | |
print(pascal(col, row) + " ") | |
println() | |
} | |
} | |
/** | |
* Exercise 1: Pascal's Triangle | |
*/ | |
def pascal(c: Int, r: Int): Int = { | |
if (c == 0 || c == r) 1 | |
else pascal(c - 1, r - 1) + pascal(c, r - 1) | |
} | |
/** | |
* Exercise 2: Parentheses Balancing | |
*/ | |
def balance(chars: List[Char]): Boolean = { | |
def f(chars: List[Char], numOpens: Int): Boolean = { | |
if (chars.isEmpty) { | |
numOpens == 0 | |
} else { | |
val h = chars.head | |
val n = | |
if (h == '(') numOpens + 1 | |
else if (h == ')') numOpens - 1 | |
else numOpens | |
if (n >= 0) f(chars.tail, n) | |
else false | |
} | |
} | |
f(chars, 0) | |
} | |
/** | |
* Exercise 3: Counting Change | |
* Write a recursive function that counts how many different ways you can make | |
* change for an amount, given a list of coin denominations. For example, | |
* there are 3 ways to give change for 4 if you have coins with denomiation | |
* 1 and 2: 1+1+1+1, 1+1+2, 2+2. | |
*/ | |
def countChange(money: Int, coins: List[Int]): Int = { | |
def f(lastMaxCoin_total_coll: List[(Int, Int)], count: Int): Int = { | |
if (lastMaxCoin_total_coll.isEmpty) { | |
count | |
} else { | |
val b = ListBuffer[(Int, Int)]() | |
var newCount = count | |
for ((lastMaxCoin, total) <- lastMaxCoin_total_coll) { | |
if (total < money) { | |
for (c <- coins) { | |
if (c >= lastMaxCoin) { | |
val e = (c, total + c) | |
b += e | |
} | |
} | |
} else if (total == money) { | |
newCount += 1 | |
} | |
} | |
f(b.toList, newCount) | |
} | |
} | |
val b = coins.map { c => (c, c) } | |
f(b, 0) | |
} | |
} |
@jeffreyyun's solutions above are the best. But here are mine.
def pascal(c: Int, r: Int): Int = {
if (r < 0 || c < 0 || c > r) 0
else if (c == 0 || c == r) 1
else pascal(c - 1, r - 1) + pascal(c, r - 1)
}
def balance(chars: List[Char]): Boolean = {
val OPEN = '('
val CLOSE = ')'
def balanceRec(chars: List[Char], numOpen: Int): Boolean = {
(chars) match {
case (Nil) => numOpen == 0
case (c :: tail) =>
if (numOpen < 0) false
else if (c == OPEN) balanceRec(tail, numOpen + 1)
else if (c == CLOSE) balanceRec(tail, numOpen - 1)
else balanceRec(tail, numOpen)
}
}
balanceRec(chars, 0)
}
def countChange(money: Int, coins: List[Int]): Int = {
(coins) match {
case (Nil) => 0
case (c :: tail) =>
if (money < 0) 0
else if (money == 0) 1
else countChange(money - c, coins) + countChange(money, tail)
}
}
def balance(chars: List[Char]): Boolean = {
def balanced(chars: List[Char], open: Int): Boolean = {
if (open < 0) false else
chars match {
case Nil => open == 0
case _ => {
chars.head match {
case '(' => balanced(chars.tail, open + 1)
case ')' => balanced(chars.tail, open - 1)
case _ => balanced(chars.tail, open)
}
}
}
}
balanced(chars, 0)
}
def balance(chars: List[Char]): Boolean = { def balanced(chars: List[Char], open: Int): Boolean = { if (open < 0) false else chars match { case Nil => open == 0 case _ => { chars.head match { case '(' => balanced(chars.tail, open + 1) case ')' => balanced(chars.tail, open - 1) case _ => balanced(chars.tail, open) } } } } balanced(chars, 0) }
Hi, I have a much more simplified version of the balance code:
def balance(chars : List[Char]) : Boolean = {
val equal : Int = 0
@tailrec
def equality (chars : List[Char], equal : Int) : Boolean = {
if (chars.isEmpty) equal == 0 else {
chars.head match{
case '(' => equality(chars.tail, equal + 1)
case ')' => equality(chars.tail, equal - 1)
case _ => equality(chars.tail, equal)
}
}
}
equality(chars, 0)
}
:) The answer is really not smart. Code just like in C but not functional language. Use recursive function.
Indeed... the change function, I'm sure works but it uses two if not three, more advanced elements not lectured in the course yet... that's not the point.
maps,
for
and listbuffer
@PyAntony it helps to break recursive problems down into a base case and a recursive step. If you find yourself stuck, try figuring out your base case(s) first: the simplest possible input (often 0 or 1) where you can just return a value. Then for the recursive step figure out how you'd get from that to the next case. The base case is usually just a statement (or a couple of statements) and the recursive step is then a (tail) recursive function call.
So in the pascal case, the base case is that you are in the first column or the last column, in which case return 1. (I actually prefer to add another base case of an illegal input where c < 0, r < 0 or c > r, in which case I return 0). Then the recursive step is that assuming you already have everything computed up to the current step, you can get the correct value by adding the adjacent values from the row above, i.e. pascal(c-1, r-1) and pascal(c-1, r).