Created
December 2, 2022 10:50
-
-
Save nguigs/92d290c99439495383ffa701dbf681db to your computer and use it in GitHub Desktop.
Toy example for online kmeans on the Grassmann manifold
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Riemannian k-means on the Grassmann Manifold. | |
Nicolas Guigui, 29/11/2022 | |
""" | |
import geomstats.backend as gs | |
from geomstats.geometry.grassmannian import Grassmannian | |
from geomstats.learning.online_kmeans import OnlineKMeans | |
n_samples = 10 | |
n = 3 | |
p = 1 | |
manifold = Grassmannian(n, p) | |
metric = manifold.metric | |
# Generate data around first random center | |
center_1 = manifold.random_point() | |
vec_1 = manifold.random_tangent_vec(center_1, n_samples) | |
vec_1 /= metric.injectivity_radius(center_1) * 10 | |
cluster_1 = metric.exp(vec_1, center_1) | |
print(manifold.belongs(cluster_1).all()) | |
# Generate data around second random center | |
center_2 = manifold.random_point() | |
vec_2 = manifold.random_tangent_vec(center_2, n_samples) | |
vec_2 /= metric.injectivity_radius(center_2) * 10 | |
cluster_2 = metric.exp(vec_2, center_2) | |
print(manifold.belongs(cluster_2).all()) | |
data = gs.concatenate((cluster_1, cluster_2), axis=0) | |
kmeans = OnlineKMeans(metric, n_clusters=2, max_iter=2000, atol=1e-3) | |
kmeans.fit(data) | |
labels = kmeans.predict(data) | |
centroids = kmeans.cluster_centers_ | |
print(manifold.belongs(centroids)) | |
print(metric.dist(center_1, centroids)) | |
print(metric.dist(center_2, centroids)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment