-
-
Save nguyenvulebinh/794c296b1133feb80e46e812ef50f7fc to your computer and use it in GitHub Desktop.
import typing as T | |
import cytoolz.curried as tz | |
import pyspark | |
from pyspark.sql.functions import explode | |
def schema_to_columns(schema: pyspark.sql.types.StructType) -> T.List[T.List[str]]: | |
columns = list() | |
def helper(schm: pyspark.sql.types.StructType, prefix: list = None): | |
if prefix is None: | |
prefix = list() | |
for item in schm.fields: | |
if isinstance(item.dataType, pyspark.sql.types.StructType): | |
helper(item.dataType, prefix + [item.name]) | |
else: | |
columns.append(prefix + [item.name]) | |
helper(schema) | |
return columns | |
def flatten_array(frame: pyspark.sql.DataFrame) -> (pyspark.sql.DataFrame, BooleanType): | |
have_array = False | |
aliased_columns = list() | |
for column, t_column in frame.dtypes: | |
if t_column.startswith('array<'): | |
have_array = True | |
c = explode(frame[column]).alias(column) | |
else: | |
c = tz.get_in([column], frame) | |
aliased_columns.append(c) | |
return (frame.select(aliased_columns), have_array) | |
def flatten_frame(frame: pyspark.sql.DataFrame) -> pyspark.sql.DataFrame: | |
aliased_columns = list() | |
for col_spec in schema_to_columns(frame.schema): | |
c = tz.get_in(col_spec, frame) | |
if len(col_spec) == 1: | |
aliased_columns.append(c) | |
else: | |
aliased_columns.append(c.alias(':'.join(col_spec))) | |
return frame.select(aliased_columns) | |
def flatten_all(frame: pyspark.sql.DataFrame) -> pyspark.sql.DataFrame: | |
frame = flatten_frame(frame) | |
(frame, have_array) = flatten_array(frame) | |
if have_array: | |
return flatten_all(frame) | |
else: | |
return frame |
Hello @AxREki, yes the code works when all the datasets have data in them. if in case there is no data the results is 0 rows all together.
For example if there is no data as mentioned below then it would not work.
data = {
"HoldinBreakdown": {
"Holding": {
"HoldingDetail": [{
"HoldingDetailId":
"DetailHoldingTypeId":
"Country": {
"_VALUE": "France",
"ID":"un"
}
}
]
}
}
}
Any way i have used explode_outer instead of just explode, which works well but while exploding arrays its creating duplicate records.
@ghost Thanks for your feedback. Glad to see you found a way.
@ghost
I faced with a similar issue as you - I got the right structure and flatten schema but there is no data. The root cause of it is - explode function, it will drop records if there are nulls in the columns. I fixed that using outer_explode (that takes care of the null and behave as a left outer join in SQL). Hope this will help
@pingilis
I tried the code from this gist with the following data :
And got this :
And the data seems flattened.