Last active
May 19, 2016 04:10
-
-
Save nhasbun/48b8157e5bd296a1a93f86994cc4a3eb to your computer and use it in GitHub Desktop.
Classification using KMeans clustering
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [resultado]=clasificar(muestra, centroides) | |
%% | |
% muestra de n X no_caracteristicas | |
% centroides de no_clases X no_caracteristicas | |
%% Clasificacion de muestras | |
% segun clustering usando KMEANS. | |
% Se requiere centroides eiquetados previamente | |
% es decir, un resultado 1 equivale a la clase 1 | |
largo =length(muestra); | |
resultado =zeros(1, largo); | |
no_centroides=size(centroides, 1); | |
for i=1:largo | |
distancia=1; | |
% distancia maxima, muestras normalizadas | |
for j=1:no_centroides | |
distancia_temp=abs(muestra(i)-centroides(j, i)); | |
if(distancia_temp<distancia) | |
distancia=distancia_temp; | |
resultado(i)=j; | |
end | |
end | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment