Last active
April 16, 2016 18:10
-
-
Save nicholaswmin/3834b42219d5c127a0ed to your computer and use it in GitHub Desktop.
Clustering Paper.js Elements together using the K-means algorithm.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** | |
* Clusters a number of Paper Elements as Paper Groups. | |
* Clustering is based on distance between elements, | |
* using K-means clustering. | |
* - This method DOES NOT preserve z-order of items, so use with caution | |
* | |
* | |
* - Dependent on clusterfck.js. | |
* See: https://github.com/NathanEpstein/clusters | |
* and download browser .js file. | |
* | |
* @param {Array} - items - Array of Paper Items. | |
* @param {Number} - clusterNum - Amount of clusters to create | |
* | |
* @return {Array} - Array of Paper Groups | |
* | |
* Authors: | |
* - Nicholas Kyriakides, @nicholaswmin | |
*/ | |
function clusterKMeans(items,clusterNum) { | |
// min clusters num is the amount of items | |
if(items.length < clusterNum) { | |
clusterNum = items.length; | |
} | |
var pointsArr = []; | |
for (var i = 0; i < items.length; i++) { | |
pointsArr.push([items[i].position.x,items[i].position.y,items[i].id]); | |
} | |
var clusters = clusterfck.kmeans(pointsArr, clusterNum); | |
var groupsArr = []; | |
for (var i = 0; i < clusters.length; i++) { | |
var group = new paper.Group(); | |
for (var k = 0; k < clusters[i].length; k++) { | |
for (var l = 0; l < items.length; l++) { | |
if(items[l].id === clusters[i][k][2]) { | |
group.addChild(items[l]) | |
} | |
} | |
} | |
groupsArr.push(group.clone()); | |
group.remove() | |
} | |
return groupsArr; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment