Last active
February 15, 2025 00:25
-
-
Save nicholaswmin/c2661eb11cad5671d816 to your computer and use it in GitHub Desktop.
catmull-rom
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Catmull-Rom interpolating splines in ES6 | |
---- | |
authors: Nicholas Kyriakides (2017) & Unknown | |
from: "A class of local interpolating splines" | |
Catmull, Edwin; Rom, Raphael | University of Utah, 1974 | |
Barnhill, Robert E.; Riesenfeld, Richard F. (eds.). | |
Computer Aided Geometric Design. | |
@summary | |
Interpolates a Catmull-Rom spline through a series of x/y points | |
- If `alpha` is `0` then the 'Uniform' variant is used. | |
- If `alpha` is `0.5` then the 'Centripetal' variant is used. | |
Read: https://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline | |
- If `alpha` is `1` then the 'Chordal' variant is used. | |
@param {Array} `points` - `Point` is an object like: `{ x: 10, y: 20 }` | |
@param {Number} `alpha` - knot parameterization, can be `0`, `0.5` or `1` | |
@return {String} `d` - An SVG path of cubic beziers | |
*/ | |
const toCatmullRom = (points, alpha = 0.5) => { | |
if (!Array.isArray(points)) | |
throw TypeError(`'points' should be an Array. Got: ${typeof points}`) | |
if (![0.5, 1].includes(alpha)) | |
throw RangeError(`'alpha' should be: 1 or 0.5. Got: ${alpha}`) | |
let p0, p1, p2, p3, bp1, bp2, d1, d2, d3, A, B, N, M | |
let d3powA, d2powA, d3pow2A, d2pow2A, d1pow2A, d1powA | |
let d = 'M' + Math.round(points.at(0).x) + ',' + Math.round(points.at(0).y) + ' ' | |
for (let i = 0; i < points.length - 1; i++) { | |
p0 = i == 0 ? points[0] : points[i - 1] | |
p1 = points[i] | |
p2 = points[i + 1] | |
p3 = i + 2 < points.length ? points[i + 2] : p2 | |
d1 = Math.sqrt(Math.pow(p0.x - p1.x, 2) + Math.pow(p0.y - p1.y, 2)) | |
d2 = Math.sqrt(Math.pow(p1.x - p2.x, 2) + Math.pow(p1.y - p2.y, 2)) | |
d3 = Math.sqrt(Math.pow(p2.x - p3.x, 2) + Math.pow(p2.y - p3.y, 2)) | |
// Catmull-Rom to Cubic Bezier conversion matrix | |
// A = 2d1^2a + 3d1^a * d2^a + d3^2a | |
// B = 2d3^2a + 3d3^a * d2^a + d2^2a | |
// [ 0 1 0 0 ] | |
// [ -d2^2a /N A/N d1^2a /N 0 ] | |
// [ 0 d3^2a /M B/M -d2^2a /M ] | |
// [ 0 0 1 0 ] | |
d3powA = Math.pow(d3, alpha) | |
d3pow2A = Math.pow(d3, 2 * alpha) | |
d2powA = Math.pow(d2, alpha) | |
d2pow2A = Math.pow(d2, 2 * alpha) | |
d1powA = Math.pow(d1, alpha) | |
d1pow2A = Math.pow(d1, 2 * alpha) | |
A = 2 * d1pow2A + 3 * d1powA * d2powA + d2pow2A | |
B = 2 * d3pow2A + 3 * d3powA * d2powA + d2pow2A | |
N = 3 * d1powA * (d1powA + d2powA) | |
if (N > 0) | |
N = 1 / N | |
M = 3 * d3powA * (d3powA + d2powA) | |
if (M > 0) | |
M = 1 / M | |
bp1 = { | |
x: (-d2pow2A * p0.x + A * p1.x + d1pow2A * p2.x) * N, | |
y: (-d2pow2A * p0.y + A * p1.y + d1pow2A * p2.y) * N | |
} | |
bp2 = { | |
x: (d3pow2A * p1.x + B * p2.x - d2pow2A * p3.x) * M, | |
y: (d3pow2A * p1.y + B * p2.y - d2pow2A * p3.y) * M | |
} | |
if (bp1.x == 0 && bp1.y == 0) | |
bp1 = p1 | |
if (bp2.x == 0 && bp2.y == 0) | |
bp2 = p2 | |
d += 'C' + bp1.x + ',' + bp1.y + ' ' + bp2.x + ',' + bp2.y + ' ' + p2.x + ',' + p2.y + ' ' | |
} | |
return d | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@sivakrishna551
I've chopped some parts of the code from somewhere else,
was some kind of chart-drawing library I think.
I'm almost positive it was MIT licensed; there's 0 chance to remember
and its minimal - but still quote them as Unknown Authors.
It's MIT from me, so feel free. I'l add i t below.
Adding a bit more detail; some people seem to be using this.
It solves this problem:
The MIT License
Nicholas Kyriakides, (c) and Unknown Authors 2015
From: "A Class of Local Interpolating Splines"
Edwin Catmull & Raphael Rom
University of Utah, 1974
This implementation solves curve interpolation issues, particularly self-intersection problems that occur in other algorithms compared to Centripetal Catmull-Rom splines.
Original Papers:
Note: Parts of this implementation (cubic conversions) were adapted from another source (unknown).
Legend:
For discussion of implementation details, see PaperJS Issue #338.