Created
September 15, 2023 08:20
-
-
Save nickefy/0a53513d560b406718f36675f50b9cd8 to your computer and use it in GitHub Desktop.
How I Built a Data Lakehouse with Delta Lake Architecture
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
pip install delta-spark==2.4.0 | |
pip install pyspark | |
import pyspark | |
from delta import * | |
builder = pyspark.sql.SparkSession.builder.appName("MyApp") \ | |
.config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension") \ | |
.config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog") | |
spark = configure_spark_with_delta_pip(builder).getOrCreate() | |
# Create an RDD of Rows with ID and Amount | |
rdd = spark.sparkContext.parallelize([ | |
Row(id=1, amount=100), | |
Row(id=2, amount=200), | |
Row(id=3, amount=300), | |
Row(id=4, amount=400), | |
Row(id=5, amount=500) | |
]) | |
# Create a DataFrame from the RDD | |
df = spark.createDataFrame(rdd) | |
df.show() | |
# Write the DataFrame to a Delta table | |
delta_table_path = "/path/to/delta-table" | |
df.write.format("delta").mode("overwrite").save(delta_table_path) | |
# Read from delta table | |
df_read = spark.read.format("delta").load(delta_table_path) | |
df_read.show() | |
# Stop the Spark session | |
spark.stop() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment