Created
March 16, 2017 22:07
-
-
Save nicoguaro/9a60896ee40d4450011f2a8e308bc2ef to your computer and use it in GitHub Desktop.
Fit an ellipse for a point cloud
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Fit an ellipse for a point cloud | |
@author: Nicolas Guarin-Zapata | |
""" | |
from __future__ import division, print_function | |
import numpy as np | |
from numpy import sin, cos, arctan2, mean | |
from numpy.linalg import norm | |
from scipy.optimize import minimize | |
import matplotlib.pyplot as plt | |
def ellip_fun(coef, xi, yi): | |
A, B, C, D, E, F = coef | |
return norm(A*xi**2 + B*xi*yi + C*yi**2 + D*xi + E*yi + F)**2 | |
def ellip_const(coef): | |
return 4*coef[0]*coef[2] - coef[1]**2 | |
def ellip_initial(xi, yi): | |
def eigsorted(cov): | |
vals, vecs = np.linalg.eigh(cov) | |
order = vals.argsort()[::-1] | |
return vals[order], vecs[:, order] | |
cov = np.cov(xi, yi) | |
vals, vecs = eigsorted(cov) | |
theta = arctan2(*vecs[:,0][::-1]) | |
x_new = cos(theta)*xi + sin(theta)*yi | |
y_new = -sin(theta)*xi + cos(theta)*yi | |
a = 0.5*(np.max(x_new) - np.min(x_new)) | |
b = 0.5*(np.max(y_new) - np.min(y_new)) | |
x0 = mean(xi) | |
y0 = mean(yi) | |
A = (a*sin(theta))**2 + (b*cos(theta))**2 | |
B = 2*(b**2 - a**2)*sin(theta)*cos(theta) | |
C = (a*cos(theta))**2 + (b*sin(theta))**2 | |
D = -2*A*x0 - B*y0 | |
E = -B*x0 - 2*C*y0 | |
F = A*x0**2 + B*x0*y0 + C*y0**2 - a**2*b**2 | |
return A, B, C, D, E, F | |
a = 2 | |
b = 1 | |
theta_0 = np.pi/4 | |
x0 = 10 | |
y0 = 0 | |
npts = 200 | |
disp = 1/100 | |
np.random.seed(seed=1) | |
theta = np.linspace(0, np.pi, npts) | |
xi = x0 + a*(cos(theta)*cos(theta_0) + disp*np.random.normal(size=npts)) -\ | |
b*(sin(theta)*sin(theta_0) + disp*np.random.normal(size=npts)) | |
yi = y0 + a*(cos(theta)*sin(theta_0) + disp*np.random.normal(size=npts))+\ | |
b*(sin(theta)*cos(theta_0) + disp*np.random.normal(size=npts)) | |
coef_0 = ellip_initial(xi, yi) | |
cons = {"type": "ineq", "fun": ellip_const} | |
opts = {'disp': True, "ftol": 1e-8, "maxiter": 300} | |
res = minimize(ellip_fun, coef_0, args=(xi, yi), method="SLSQP", tol=1e-8, | |
options=opts, constraints=cons) | |
A, B, C, D, E, F = res.x | |
x_grid, y_grid = np.mgrid[np.min(xi):np.max(xi):101j, | |
np.min(yi):np.max(yi):101j] | |
z_grid = A*x_grid**2 + B*x_grid*y_grid + C*y_grid**2 + D*x_grid + E*y_grid + F | |
plt.plot(xi, yi, ".", alpha=0.2) | |
plt.contour(x_grid, y_grid, z_grid, [0], linewidths=2, colors="black") | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment