Created
January 16, 2018 15:14
-
-
Save nicoguaro/9bf6fb94f555c9cedeec6200bcd365a2 to your computer and use it in GitHub Desktop.
Dimensional reduction using non-linear methods present in scikit-learn
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python2 | |
# -*- coding: utf-8 -*- | |
""" | |
Dimensional reduction using non-linear methods present in scikit-learn | |
Based on an example by Jake Vanderplas | |
""" | |
from time import time | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
from matplotlib.ticker import NullFormatter | |
import cmocean | |
from sklearn import manifold | |
# Next line to silence pyflakes. This import is needed. | |
Axes3D | |
def toroidal_helix(n_points=100, rad_out=2, rad_in=0.5, n_turns=10, | |
random_state=None, noise=0.0): | |
from numpy import linspace, zeros, sin, cos, pi, random | |
random.seed(seed=random_state) | |
t = linspace(-1, 1, n_points) | |
X = zeros((n_points, 3)) | |
x = (rad_out + rad_in*cos(n_turns*pi*t)) * cos(pi*t) | |
y = (rad_out + rad_in*cos(n_turns*pi*t)) * sin(pi*t) | |
z = rad_in*sin(n_turns*pi*t) | |
X[:, 0] = x + rad_in*random.normal(size=n_points, scale=noise) | |
X[:, 1] = y + rad_in*random.normal(size=n_points, scale=noise) | |
X[:, 2] = z + rad_in*random.normal(size=n_points, scale=noise) | |
return X, t | |
n_points = 500 | |
cmap = cmocean.cm.phase | |
#cmap = plt.cm.Spectral | |
X, color = toroidal_helix(n_points, random_state=0, noise=0.1) | |
n_neighbors = 6 | |
n_components = 2 | |
point_size = 5 | |
fig = plt.figure(figsize=(15, 6)) | |
plt.suptitle("Manifold Learning with %i points, %i neighbors" | |
% (1000, n_neighbors), fontsize=14) | |
ax = fig.add_subplot(151, projection='3d') | |
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=cmap, s=5) | |
ax.view_init(30, -60) | |
ax.set_zlim(-2, 2) | |
methods = ['standard', 'ltsa', 'hessian', 'modified'] | |
labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] | |
for i, method in enumerate(methods): | |
t0 = time() | |
Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components, | |
eigen_solver='auto', | |
method=method).fit_transform(X) | |
t1 = time() | |
print("%s: %.2g sec" % (methods[i], t1 - t0)) | |
ax = fig.add_subplot(252 + i) | |
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=cmap, s=5) | |
plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) | |
ax.xaxis.set_major_formatter(NullFormatter()) | |
ax.yaxis.set_major_formatter(NullFormatter()) | |
plt.axis('tight') | |
t0 = time() | |
Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X) | |
t1 = time() | |
print("Isomap: %.2g sec" % (t1 - t0)) | |
ax = fig.add_subplot(257) | |
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=cmap, s=5) | |
plt.title("Isomap (%.2g sec)" % (t1 - t0)) | |
ax.xaxis.set_major_formatter(NullFormatter()) | |
ax.yaxis.set_major_formatter(NullFormatter()) | |
plt.axis('tight') | |
t0 = time() | |
mds = manifold.MDS(n_components, max_iter=100, n_init=1) | |
Y = mds.fit_transform(X) | |
t1 = time() | |
print("MDS: %.2g sec" % (t1 - t0)) | |
ax = fig.add_subplot(258) | |
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=cmap, s=5) | |
plt.title("MDS (%.2g sec)" % (t1 - t0)) | |
ax.xaxis.set_major_formatter(NullFormatter()) | |
ax.yaxis.set_major_formatter(NullFormatter()) | |
plt.axis('tight') | |
t0 = time() | |
se = manifold.SpectralEmbedding(n_components=n_components, | |
n_neighbors=n_neighbors) | |
Y = se.fit_transform(X) | |
t1 = time() | |
print("SpectralEmbedding: %.2g sec" % (t1 - t0)) | |
ax = fig.add_subplot(259) | |
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=cmap, s=5) | |
plt.title("SpectralEmbedding (%.2g sec)" % (t1 - t0)) | |
ax.xaxis.set_major_formatter(NullFormatter()) | |
ax.yaxis.set_major_formatter(NullFormatter()) | |
plt.axis('tight') | |
t0 = time() | |
tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0) | |
Y = tsne.fit_transform(X) | |
t1 = time() | |
print("t-SNE: %.2g sec" % (t1 - t0)) | |
ax = fig.add_subplot(2, 5, 10) | |
plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=cmap, s=5) | |
plt.title("t-SNE (%.2g sec)" % (t1 - t0)) | |
ax.xaxis.set_major_formatter(NullFormatter()) | |
ax.yaxis.set_major_formatter(NullFormatter()) | |
plt.axis('tight') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment